What are the steps to convert
0 - 1000 0010 - 100 0101 0111 0000 1001 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 0010
The last 23 bits contain the mantissa:
100 0101 0111 0000 1001 0100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0010(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 2 + 0 =
128 + 2 =
130(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 130 - 127 = 3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
100 0101 0111 0000 1001 0100(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0 + 0 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0 =
0.5 + 0.031 25 + 0.007 812 5 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 001 907 348 632 812 5 + 0.000 000 476 837 158 203 125 =
0.542 498 111 724 853 515 625(10)
= 12.339 984 893 798 828 125
0 - 1000 0010 - 100 0101 0111 0000 1001 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 12.339 984 893 798 828 125(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.