What are the steps to convert
1 - 1000 0010 - 000 1011 1010 0000 0000 0010, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 0010
The last 23 bits contain the mantissa:
000 1011 1010 0000 0000 0010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0010(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 2 + 0 =
128 + 2 =
130(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 130 - 127 = 3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
000 1011 1010 0000 0000 0010(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0 + 0 + 0 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0 =
0.062 5 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.000 976 562 5 + 0.000 000 238 418 579 101 562 5 =
0.090 820 550 918 579 101 562 5(10)
= -8.726 564 407 348 632 812 5
1 - 1000 0010 - 000 1011 1010 0000 0000 0010, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -8.726 564 407 348 632 812 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.