What are the steps to convert
0 - 1000 0000 - 111 0000 0000 0000 0101 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 0000
The last 23 bits contain the mantissa:
111 0000 0000 0000 0101 0100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0000(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
128 =
128(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 128 - 127 = 1
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 0000 0000 0000 0101 0100(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0.125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 007 629 394 531 25 + 0 + 0.000 001 907 348 632 812 5 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0 =
0.5 + 0.25 + 0.125 + 0.000 007 629 394 531 25 + 0.000 001 907 348 632 812 5 + 0.000 000 476 837 158 203 125 =
0.875 010 013 580 322 265 625(10)
= 3.750 020 027 160 644 531 25
0 - 1000 0000 - 111 0000 0000 0000 0101 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 3.750 020 027 160 644 531 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.