What are the steps to convert
0 - 0111 1110 - 110 0000 1110 1111 1110 0010, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0111 1110
The last 23 bits contain the mantissa:
110 0000 1110 1111 1110 0010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0111 1110(2) =
0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
0 + 64 + 32 + 16 + 8 + 4 + 2 + 0 =
64 + 32 + 16 + 8 + 4 + 2 =
126(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 126 - 127 = -1
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
110 0000 1110 1111 1110 0010(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0 + 0 + 0 + 0 + 0 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0 =
0.5 + 0.25 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 000 238 418 579 101 562 5 =
0.757 320 642 471 313 476 562 5(10)
= 0.878 660 321 235 656 738 281 25
0 - 0111 1110 - 110 0000 1110 1111 1110 0010, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 0.878 660 321 235 656 738 281 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.