What are the steps to convert
0 - 0111 1010 - 111 0101 1100 0010 1000 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0111 1010
The last 23 bits contain the mantissa:
111 0101 1100 0010 1000 1000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0111 1010(2) =
0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
0 + 64 + 32 + 16 + 8 + 0 + 2 + 0 =
64 + 32 + 16 + 8 + 2 =
122(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 122 - 127 = -5
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 0101 1100 0010 1000 1000(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0.125 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 =
0.5 + 0.25 + 0.125 + 0.031 25 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 000 953 674 316 406 25 =
0.919 999 122 619 628 906 25(10)
= 0.059 999 972 581 863 403 320 312 5
0 - 0111 1010 - 111 0101 1100 0010 1000 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 0.059 999 972 581 863 403 320 312 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.