What are the steps to convert
0 - 0101 0111 - 110 1100 0000 0000 0011 0111, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0101 0111
The last 23 bits contain the mantissa:
110 1100 0000 0000 0011 0111
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0101 0111(2) =
0 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
0 + 64 + 0 + 16 + 0 + 4 + 2 + 1 =
64 + 16 + 4 + 2 + 1 =
87(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 87 - 127 = -40
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
110 1100 0000 0000 0011 0111(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0.5 + 0.25 + 0 + 0.062 5 + 0.031 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.25 + 0.062 5 + 0.031 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.843 756 556 510 925 292 968 75(10)
= 0.000 000 000 001 676 886 819 505 785 108 930 240 3
0 - 0101 0111 - 110 1100 0000 0000 0011 0111, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 0.000 000 000 001 676 886 819 505 785 108 930 240 3(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.