What are the steps to convert
0 - 0100 0110 - 101 0000 0000 0000 0010 1001, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0100 0110
The last 23 bits contain the mantissa:
101 0000 0000 0000 0010 1001
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0100 0110(2) =
0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
0 + 64 + 0 + 0 + 0 + 4 + 2 + 0 =
64 + 4 + 2 =
70(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 70 - 127 = -57
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 0000 0000 0000 0010 1001(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0.5 + 0 + 0.125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.125 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 + 0.000 000 119 209 289 550 781 25 =
0.625 004 887 580 871 582 031 25(10)
= 0.000 000 000 000 000 011 275 736 508 254 360 787 79
0 - 0100 0110 - 101 0000 0000 0000 0010 1001, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 0.000 000 000 000 000 011 275 736 508 254 360 787 79(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.