What are the steps to convert
1 - 0100 0010 - 100 1110 0000 0000 0000 0001, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
0100 0010
The last 23 bits contain the mantissa:
100 1110 0000 0000 0000 0001
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0100 0010(2) =
0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
0 + 64 + 0 + 0 + 0 + 0 + 2 + 0 =
64 + 2 =
66(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 66 - 127 = -61
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
100 1110 0000 0000 0000 0001(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0.5 + 0 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.062 5 + 0.031 25 + 0.015 625 + 0.000 000 119 209 289 550 781 25 =
0.609 375 119 209 289 550 781 25(10)
= -0.000 000 000 000 000 000 697 955 200 236 331 763 95
1 - 0100 0010 - 100 1110 0000 0000 0000 0001, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -0.000 000 000 000 000 000 697 955 200 236 331 763 95(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.