What are the steps to convert
0 - 0100 0001 - 010 0000 1000 0010 1000 0010, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0100 0001
The last 23 bits contain the mantissa:
010 0000 1000 0010 1000 0010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0100 0001(2) =
0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
0 + 64 + 0 + 0 + 0 + 0 + 0 + 1 =
64 + 1 =
65(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 65 - 127 = -62
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
010 0000 1000 0010 1000 0010(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0 + 0.25 + 0 + 0 + 0 + 0 + 0 + 0.003 906 25 + 0 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0 =
0.25 + 0.003 906 25 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 000 238 418 579 101 562 5 =
0.253 982 782 363 891 601 562 5(10)
= 0.000 000 000 000 000 000 271 914 171 379 669 753 95
0 - 0100 0001 - 010 0000 1000 0010 1000 0010, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 0.000 000 000 000 000 000 271 914 171 379 669 753 95(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.