What are the steps to convert
1 - 0010 0011 - 110 1110 0100 0000 0001 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
0010 0011
The last 23 bits contain the mantissa:
110 1110 0100 0000 0001 1000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0010 0011(2) =
0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
0 + 0 + 32 + 0 + 0 + 0 + 2 + 1 =
32 + 2 + 1 =
35(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 35 - 127 = -92
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
110 1110 0100 0000 0001 1000(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0 + 0 + 0.001 953 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 =
0.5 + 0.25 + 0.062 5 + 0.031 25 + 0.015 625 + 0.001 953 125 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 =
0.861 330 986 022 949 218 75(10)
= -0
1 - 0010 0011 - 110 1110 0100 0000 0001 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -0(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.