What are the steps to convert
1 - 0000 1011 - 110 1111 1011 1111 1111 0101, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
0000 1011
The last 23 bits contain the mantissa:
110 1111 1011 1111 1111 0101
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0000 1011(2) =
0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
0 + 0 + 0 + 0 + 8 + 0 + 2 + 1 =
8 + 2 + 1 =
11(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 11 - 127 = -116
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
110 1111 1011 1111 1111 0101(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0.5 + 0.25 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.25 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 476 837 158 203 125 + 0.000 000 119 209 289 550 781 25 =
0.873 045 563 697 814 941 406 25(10)
= -0
1 - 0000 1011 - 110 1111 1011 1111 1111 0101, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -0(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.