64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 99 999 999 999 999 999 999 999 999 999 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 99 999 999 999 999 999 999 999 999 999(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 99 999 999 999 999 999 999 999 999 999 ÷ 2 = 49 999 999 999 999 999 999 999 999 999 + 1;
  • 49 999 999 999 999 999 999 999 999 999 ÷ 2 = 24 999 999 999 999 999 999 999 999 999 + 1;
  • 24 999 999 999 999 999 999 999 999 999 ÷ 2 = 12 499 999 999 999 999 999 999 999 999 + 1;
  • 12 499 999 999 999 999 999 999 999 999 ÷ 2 = 6 249 999 999 999 999 999 999 999 999 + 1;
  • 6 249 999 999 999 999 999 999 999 999 ÷ 2 = 3 124 999 999 999 999 999 999 999 999 + 1;
  • 3 124 999 999 999 999 999 999 999 999 ÷ 2 = 1 562 499 999 999 999 999 999 999 999 + 1;
  • 1 562 499 999 999 999 999 999 999 999 ÷ 2 = 781 249 999 999 999 999 999 999 999 + 1;
  • 781 249 999 999 999 999 999 999 999 ÷ 2 = 390 624 999 999 999 999 999 999 999 + 1;
  • 390 624 999 999 999 999 999 999 999 ÷ 2 = 195 312 499 999 999 999 999 999 999 + 1;
  • 195 312 499 999 999 999 999 999 999 ÷ 2 = 97 656 249 999 999 999 999 999 999 + 1;
  • 97 656 249 999 999 999 999 999 999 ÷ 2 = 48 828 124 999 999 999 999 999 999 + 1;
  • 48 828 124 999 999 999 999 999 999 ÷ 2 = 24 414 062 499 999 999 999 999 999 + 1;
  • 24 414 062 499 999 999 999 999 999 ÷ 2 = 12 207 031 249 999 999 999 999 999 + 1;
  • 12 207 031 249 999 999 999 999 999 ÷ 2 = 6 103 515 624 999 999 999 999 999 + 1;
  • 6 103 515 624 999 999 999 999 999 ÷ 2 = 3 051 757 812 499 999 999 999 999 + 1;
  • 3 051 757 812 499 999 999 999 999 ÷ 2 = 1 525 878 906 249 999 999 999 999 + 1;
  • 1 525 878 906 249 999 999 999 999 ÷ 2 = 762 939 453 124 999 999 999 999 + 1;
  • 762 939 453 124 999 999 999 999 ÷ 2 = 381 469 726 562 499 999 999 999 + 1;
  • 381 469 726 562 499 999 999 999 ÷ 2 = 190 734 863 281 249 999 999 999 + 1;
  • 190 734 863 281 249 999 999 999 ÷ 2 = 95 367 431 640 624 999 999 999 + 1;
  • 95 367 431 640 624 999 999 999 ÷ 2 = 47 683 715 820 312 499 999 999 + 1;
  • 47 683 715 820 312 499 999 999 ÷ 2 = 23 841 857 910 156 249 999 999 + 1;
  • 23 841 857 910 156 249 999 999 ÷ 2 = 11 920 928 955 078 124 999 999 + 1;
  • 11 920 928 955 078 124 999 999 ÷ 2 = 5 960 464 477 539 062 499 999 + 1;
  • 5 960 464 477 539 062 499 999 ÷ 2 = 2 980 232 238 769 531 249 999 + 1;
  • 2 980 232 238 769 531 249 999 ÷ 2 = 1 490 116 119 384 765 624 999 + 1;
  • 1 490 116 119 384 765 624 999 ÷ 2 = 745 058 059 692 382 812 499 + 1;
  • 745 058 059 692 382 812 499 ÷ 2 = 372 529 029 846 191 406 249 + 1;
  • 372 529 029 846 191 406 249 ÷ 2 = 186 264 514 923 095 703 124 + 1;
  • 186 264 514 923 095 703 124 ÷ 2 = 93 132 257 461 547 851 562 + 0;
  • 93 132 257 461 547 851 562 ÷ 2 = 46 566 128 730 773 925 781 + 0;
  • 46 566 128 730 773 925 781 ÷ 2 = 23 283 064 365 386 962 890 + 1;
  • 23 283 064 365 386 962 890 ÷ 2 = 11 641 532 182 693 481 445 + 0;
  • 11 641 532 182 693 481 445 ÷ 2 = 5 820 766 091 346 740 722 + 1;
  • 5 820 766 091 346 740 722 ÷ 2 = 2 910 383 045 673 370 361 + 0;
  • 2 910 383 045 673 370 361 ÷ 2 = 1 455 191 522 836 685 180 + 1;
  • 1 455 191 522 836 685 180 ÷ 2 = 727 595 761 418 342 590 + 0;
  • 727 595 761 418 342 590 ÷ 2 = 363 797 880 709 171 295 + 0;
  • 363 797 880 709 171 295 ÷ 2 = 181 898 940 354 585 647 + 1;
  • 181 898 940 354 585 647 ÷ 2 = 90 949 470 177 292 823 + 1;
  • 90 949 470 177 292 823 ÷ 2 = 45 474 735 088 646 411 + 1;
  • 45 474 735 088 646 411 ÷ 2 = 22 737 367 544 323 205 + 1;
  • 22 737 367 544 323 205 ÷ 2 = 11 368 683 772 161 602 + 1;
  • 11 368 683 772 161 602 ÷ 2 = 5 684 341 886 080 801 + 0;
  • 5 684 341 886 080 801 ÷ 2 = 2 842 170 943 040 400 + 1;
  • 2 842 170 943 040 400 ÷ 2 = 1 421 085 471 520 200 + 0;
  • 1 421 085 471 520 200 ÷ 2 = 710 542 735 760 100 + 0;
  • 710 542 735 760 100 ÷ 2 = 355 271 367 880 050 + 0;
  • 355 271 367 880 050 ÷ 2 = 177 635 683 940 025 + 0;
  • 177 635 683 940 025 ÷ 2 = 88 817 841 970 012 + 1;
  • 88 817 841 970 012 ÷ 2 = 44 408 920 985 006 + 0;
  • 44 408 920 985 006 ÷ 2 = 22 204 460 492 503 + 0;
  • 22 204 460 492 503 ÷ 2 = 11 102 230 246 251 + 1;
  • 11 102 230 246 251 ÷ 2 = 5 551 115 123 125 + 1;
  • 5 551 115 123 125 ÷ 2 = 2 775 557 561 562 + 1;
  • 2 775 557 561 562 ÷ 2 = 1 387 778 780 781 + 0;
  • 1 387 778 780 781 ÷ 2 = 693 889 390 390 + 1;
  • 693 889 390 390 ÷ 2 = 346 944 695 195 + 0;
  • 346 944 695 195 ÷ 2 = 173 472 347 597 + 1;
  • 173 472 347 597 ÷ 2 = 86 736 173 798 + 1;
  • 86 736 173 798 ÷ 2 = 43 368 086 899 + 0;
  • 43 368 086 899 ÷ 2 = 21 684 043 449 + 1;
  • 21 684 043 449 ÷ 2 = 10 842 021 724 + 1;
  • 10 842 021 724 ÷ 2 = 5 421 010 862 + 0;
  • 5 421 010 862 ÷ 2 = 2 710 505 431 + 0;
  • 2 710 505 431 ÷ 2 = 1 355 252 715 + 1;
  • 1 355 252 715 ÷ 2 = 677 626 357 + 1;
  • 677 626 357 ÷ 2 = 338 813 178 + 1;
  • 338 813 178 ÷ 2 = 169 406 589 + 0;
  • 169 406 589 ÷ 2 = 84 703 294 + 1;
  • 84 703 294 ÷ 2 = 42 351 647 + 0;
  • 42 351 647 ÷ 2 = 21 175 823 + 1;
  • 21 175 823 ÷ 2 = 10 587 911 + 1;
  • 10 587 911 ÷ 2 = 5 293 955 + 1;
  • 5 293 955 ÷ 2 = 2 646 977 + 1;
  • 2 646 977 ÷ 2 = 1 323 488 + 1;
  • 1 323 488 ÷ 2 = 661 744 + 0;
  • 661 744 ÷ 2 = 330 872 + 0;
  • 330 872 ÷ 2 = 165 436 + 0;
  • 165 436 ÷ 2 = 82 718 + 0;
  • 82 718 ÷ 2 = 41 359 + 0;
  • 41 359 ÷ 2 = 20 679 + 1;
  • 20 679 ÷ 2 = 10 339 + 1;
  • 10 339 ÷ 2 = 5 169 + 1;
  • 5 169 ÷ 2 = 2 584 + 1;
  • 2 584 ÷ 2 = 1 292 + 0;
  • 1 292 ÷ 2 = 646 + 0;
  • 646 ÷ 2 = 323 + 0;
  • 323 ÷ 2 = 161 + 1;
  • 161 ÷ 2 = 80 + 1;
  • 80 ÷ 2 = 40 + 0;
  • 40 ÷ 2 = 20 + 0;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


99 999 999 999 999 999 999 999 999 999(10) =


1 0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001 0111 1100 1010 1001 1111 1111 1111 1111 1111 1111 1111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 96 positions to the left, so that only one non zero digit remains to the left of it:


99 999 999 999 999 999 999 999 999 999(10) =


1 0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001 0111 1100 1010 1001 1111 1111 1111 1111 1111 1111 1111(2) =


1 0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001 0111 1100 1010 1001 1111 1111 1111 1111 1111 1111 1111(2) × 20 =


1.0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001 0111 1100 1010 1001 1111 1111 1111 1111 1111 1111 1111(2) × 296


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 96


Mantissa (not normalized):
1.0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001 0111 1100 1010 1001 1111 1111 1111 1111 1111 1111 1111


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


96 + 2(11-1) - 1 =


(96 + 1 023)(10) =


1 119(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 119 ÷ 2 = 559 + 1;
  • 559 ÷ 2 = 279 + 1;
  • 279 ÷ 2 = 139 + 1;
  • 139 ÷ 2 = 69 + 1;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1119(10) =


100 0101 1111(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001 0111 1100 1010 1001 1111 1111 1111 1111 1111 1111 1111 =


0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0101 1111


Mantissa (52 bits) =
0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001


The base ten decimal number 99 999 999 999 999 999 999 999 999 999 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0101 1111 - 0100 0011 0001 1110 0000 1111 1010 1110 0110 1101 0111 0010 0001

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 456.74 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:16 UTC (GMT)
Number 9 468 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number 8 271 096 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number -118 385 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number 115.2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number -247.6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number 42.341 749 99 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number 5 702 556 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number 5 999 932 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
Number -54.45 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 17:15 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100