Decimal to 64 Bit IEEE 754 Binary: Convert Number 92.299 999 999 999 997 157 829 056 949 3 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 92.299 999 999 999 997 157 829 056 949 3(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 92.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 92 ÷ 2 = 46 + 0;
  • 46 ÷ 2 = 23 + 0;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

92(10) =


101 1100(2)


3. Convert to binary (base 2) the fractional part: 0.299 999 999 999 997 157 829 056 949 3.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.299 999 999 999 997 157 829 056 949 3 × 2 = 0 + 0.599 999 999 999 994 315 658 113 898 6;
  • 2) 0.599 999 999 999 994 315 658 113 898 6 × 2 = 1 + 0.199 999 999 999 988 631 316 227 797 2;
  • 3) 0.199 999 999 999 988 631 316 227 797 2 × 2 = 0 + 0.399 999 999 999 977 262 632 455 594 4;
  • 4) 0.399 999 999 999 977 262 632 455 594 4 × 2 = 0 + 0.799 999 999 999 954 525 264 911 188 8;
  • 5) 0.799 999 999 999 954 525 264 911 188 8 × 2 = 1 + 0.599 999 999 999 909 050 529 822 377 6;
  • 6) 0.599 999 999 999 909 050 529 822 377 6 × 2 = 1 + 0.199 999 999 999 818 101 059 644 755 2;
  • 7) 0.199 999 999 999 818 101 059 644 755 2 × 2 = 0 + 0.399 999 999 999 636 202 119 289 510 4;
  • 8) 0.399 999 999 999 636 202 119 289 510 4 × 2 = 0 + 0.799 999 999 999 272 404 238 579 020 8;
  • 9) 0.799 999 999 999 272 404 238 579 020 8 × 2 = 1 + 0.599 999 999 998 544 808 477 158 041 6;
  • 10) 0.599 999 999 998 544 808 477 158 041 6 × 2 = 1 + 0.199 999 999 997 089 616 954 316 083 2;
  • 11) 0.199 999 999 997 089 616 954 316 083 2 × 2 = 0 + 0.399 999 999 994 179 233 908 632 166 4;
  • 12) 0.399 999 999 994 179 233 908 632 166 4 × 2 = 0 + 0.799 999 999 988 358 467 817 264 332 8;
  • 13) 0.799 999 999 988 358 467 817 264 332 8 × 2 = 1 + 0.599 999 999 976 716 935 634 528 665 6;
  • 14) 0.599 999 999 976 716 935 634 528 665 6 × 2 = 1 + 0.199 999 999 953 433 871 269 057 331 2;
  • 15) 0.199 999 999 953 433 871 269 057 331 2 × 2 = 0 + 0.399 999 999 906 867 742 538 114 662 4;
  • 16) 0.399 999 999 906 867 742 538 114 662 4 × 2 = 0 + 0.799 999 999 813 735 485 076 229 324 8;
  • 17) 0.799 999 999 813 735 485 076 229 324 8 × 2 = 1 + 0.599 999 999 627 470 970 152 458 649 6;
  • 18) 0.599 999 999 627 470 970 152 458 649 6 × 2 = 1 + 0.199 999 999 254 941 940 304 917 299 2;
  • 19) 0.199 999 999 254 941 940 304 917 299 2 × 2 = 0 + 0.399 999 998 509 883 880 609 834 598 4;
  • 20) 0.399 999 998 509 883 880 609 834 598 4 × 2 = 0 + 0.799 999 997 019 767 761 219 669 196 8;
  • 21) 0.799 999 997 019 767 761 219 669 196 8 × 2 = 1 + 0.599 999 994 039 535 522 439 338 393 6;
  • 22) 0.599 999 994 039 535 522 439 338 393 6 × 2 = 1 + 0.199 999 988 079 071 044 878 676 787 2;
  • 23) 0.199 999 988 079 071 044 878 676 787 2 × 2 = 0 + 0.399 999 976 158 142 089 757 353 574 4;
  • 24) 0.399 999 976 158 142 089 757 353 574 4 × 2 = 0 + 0.799 999 952 316 284 179 514 707 148 8;
  • 25) 0.799 999 952 316 284 179 514 707 148 8 × 2 = 1 + 0.599 999 904 632 568 359 029 414 297 6;
  • 26) 0.599 999 904 632 568 359 029 414 297 6 × 2 = 1 + 0.199 999 809 265 136 718 058 828 595 2;
  • 27) 0.199 999 809 265 136 718 058 828 595 2 × 2 = 0 + 0.399 999 618 530 273 436 117 657 190 4;
  • 28) 0.399 999 618 530 273 436 117 657 190 4 × 2 = 0 + 0.799 999 237 060 546 872 235 314 380 8;
  • 29) 0.799 999 237 060 546 872 235 314 380 8 × 2 = 1 + 0.599 998 474 121 093 744 470 628 761 6;
  • 30) 0.599 998 474 121 093 744 470 628 761 6 × 2 = 1 + 0.199 996 948 242 187 488 941 257 523 2;
  • 31) 0.199 996 948 242 187 488 941 257 523 2 × 2 = 0 + 0.399 993 896 484 374 977 882 515 046 4;
  • 32) 0.399 993 896 484 374 977 882 515 046 4 × 2 = 0 + 0.799 987 792 968 749 955 765 030 092 8;
  • 33) 0.799 987 792 968 749 955 765 030 092 8 × 2 = 1 + 0.599 975 585 937 499 911 530 060 185 6;
  • 34) 0.599 975 585 937 499 911 530 060 185 6 × 2 = 1 + 0.199 951 171 874 999 823 060 120 371 2;
  • 35) 0.199 951 171 874 999 823 060 120 371 2 × 2 = 0 + 0.399 902 343 749 999 646 120 240 742 4;
  • 36) 0.399 902 343 749 999 646 120 240 742 4 × 2 = 0 + 0.799 804 687 499 999 292 240 481 484 8;
  • 37) 0.799 804 687 499 999 292 240 481 484 8 × 2 = 1 + 0.599 609 374 999 998 584 480 962 969 6;
  • 38) 0.599 609 374 999 998 584 480 962 969 6 × 2 = 1 + 0.199 218 749 999 997 168 961 925 939 2;
  • 39) 0.199 218 749 999 997 168 961 925 939 2 × 2 = 0 + 0.398 437 499 999 994 337 923 851 878 4;
  • 40) 0.398 437 499 999 994 337 923 851 878 4 × 2 = 0 + 0.796 874 999 999 988 675 847 703 756 8;
  • 41) 0.796 874 999 999 988 675 847 703 756 8 × 2 = 1 + 0.593 749 999 999 977 351 695 407 513 6;
  • 42) 0.593 749 999 999 977 351 695 407 513 6 × 2 = 1 + 0.187 499 999 999 954 703 390 815 027 2;
  • 43) 0.187 499 999 999 954 703 390 815 027 2 × 2 = 0 + 0.374 999 999 999 909 406 781 630 054 4;
  • 44) 0.374 999 999 999 909 406 781 630 054 4 × 2 = 0 + 0.749 999 999 999 818 813 563 260 108 8;
  • 45) 0.749 999 999 999 818 813 563 260 108 8 × 2 = 1 + 0.499 999 999 999 637 627 126 520 217 6;
  • 46) 0.499 999 999 999 637 627 126 520 217 6 × 2 = 0 + 0.999 999 999 999 275 254 253 040 435 2;
  • 47) 0.999 999 999 999 275 254 253 040 435 2 × 2 = 1 + 0.999 999 999 998 550 508 506 080 870 4;
  • 48) 0.999 999 999 998 550 508 506 080 870 4 × 2 = 1 + 0.999 999 999 997 101 017 012 161 740 8;
  • 49) 0.999 999 999 997 101 017 012 161 740 8 × 2 = 1 + 0.999 999 999 994 202 034 024 323 481 6;
  • 50) 0.999 999 999 994 202 034 024 323 481 6 × 2 = 1 + 0.999 999 999 988 404 068 048 646 963 2;
  • 51) 0.999 999 999 988 404 068 048 646 963 2 × 2 = 1 + 0.999 999 999 976 808 136 097 293 926 4;
  • 52) 0.999 999 999 976 808 136 097 293 926 4 × 2 = 1 + 0.999 999 999 953 616 272 194 587 852 8;
  • 53) 0.999 999 999 953 616 272 194 587 852 8 × 2 = 1 + 0.999 999 999 907 232 544 389 175 705 6;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.299 999 999 999 997 157 829 056 949 3(10) =


0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1011 1111 1(2)

5. Positive number before normalization:

92.299 999 999 999 997 157 829 056 949 3(10) =


101 1100.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1011 1111 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 6 positions to the left, so that only one non zero digit remains to the left of it:


92.299 999 999 999 997 157 829 056 949 3(10) =


101 1100.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1011 1111 1(2) =


101 1100.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1011 1111 1(2) × 20 =


1.0111 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0010 1111 111(2) × 26


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 6


Mantissa (not normalized):
1.0111 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0010 1111 111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


6 + 2(11-1) - 1 =


(6 + 1 023)(10) =


1 029(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 029 ÷ 2 = 514 + 1;
  • 514 ÷ 2 = 257 + 0;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1029(10) =


100 0000 0101(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0111 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0010 111 1111 =


0111 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0010


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0101


Mantissa (52 bits) =
0111 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0010


The base ten decimal number 92.299 999 999 999 997 157 829 056 949 3 converted and written in 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0000 0101 - 0111 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0010

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100