Convert 90.249 999 92 to 64 Bit Double Precision IEEE 754 Binary Floating Point Standard, From a Number in Base 10 Decimal System

90.249 999 92(10) to 64 bit double precision IEEE 754 binary floating point (1 bit for sign, 11 bits for exponent, 52 bits for mantissa) = ?

1. First, convert to the binary (base 2) the integer part: 90.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 90 ÷ 2 = 45 + 0;
  • 45 ÷ 2 = 22 + 1;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


90(10) =


101 1010(2)


3. Convert to the binary (base 2) the fractional part: 0.249 999 92.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.249 999 92 × 2 = 0 + 0.499 999 84;
  • 2) 0.499 999 84 × 2 = 0 + 0.999 999 68;
  • 3) 0.999 999 68 × 2 = 1 + 0.999 999 36;
  • 4) 0.999 999 36 × 2 = 1 + 0.999 998 72;
  • 5) 0.999 998 72 × 2 = 1 + 0.999 997 44;
  • 6) 0.999 997 44 × 2 = 1 + 0.999 994 88;
  • 7) 0.999 994 88 × 2 = 1 + 0.999 989 76;
  • 8) 0.999 989 76 × 2 = 1 + 0.999 979 52;
  • 9) 0.999 979 52 × 2 = 1 + 0.999 959 04;
  • 10) 0.999 959 04 × 2 = 1 + 0.999 918 08;
  • 11) 0.999 918 08 × 2 = 1 + 0.999 836 16;
  • 12) 0.999 836 16 × 2 = 1 + 0.999 672 32;
  • 13) 0.999 672 32 × 2 = 1 + 0.999 344 64;
  • 14) 0.999 344 64 × 2 = 1 + 0.998 689 28;
  • 15) 0.998 689 28 × 2 = 1 + 0.997 378 56;
  • 16) 0.997 378 56 × 2 = 1 + 0.994 757 12;
  • 17) 0.994 757 12 × 2 = 1 + 0.989 514 24;
  • 18) 0.989 514 24 × 2 = 1 + 0.979 028 48;
  • 19) 0.979 028 48 × 2 = 1 + 0.958 056 96;
  • 20) 0.958 056 96 × 2 = 1 + 0.916 113 92;
  • 21) 0.916 113 92 × 2 = 1 + 0.832 227 84;
  • 22) 0.832 227 84 × 2 = 1 + 0.664 455 68;
  • 23) 0.664 455 68 × 2 = 1 + 0.328 911 36;
  • 24) 0.328 911 36 × 2 = 0 + 0.657 822 72;
  • 25) 0.657 822 72 × 2 = 1 + 0.315 645 44;
  • 26) 0.315 645 44 × 2 = 0 + 0.631 290 88;
  • 27) 0.631 290 88 × 2 = 1 + 0.262 581 76;
  • 28) 0.262 581 76 × 2 = 0 + 0.525 163 52;
  • 29) 0.525 163 52 × 2 = 1 + 0.050 327 04;
  • 30) 0.050 327 04 × 2 = 0 + 0.100 654 08;
  • 31) 0.100 654 08 × 2 = 0 + 0.201 308 16;
  • 32) 0.201 308 16 × 2 = 0 + 0.402 616 32;
  • 33) 0.402 616 32 × 2 = 0 + 0.805 232 64;
  • 34) 0.805 232 64 × 2 = 1 + 0.610 465 28;
  • 35) 0.610 465 28 × 2 = 1 + 0.220 930 56;
  • 36) 0.220 930 56 × 2 = 0 + 0.441 861 12;
  • 37) 0.441 861 12 × 2 = 0 + 0.883 722 24;
  • 38) 0.883 722 24 × 2 = 1 + 0.767 444 48;
  • 39) 0.767 444 48 × 2 = 1 + 0.534 888 96;
  • 40) 0.534 888 96 × 2 = 1 + 0.069 777 92;
  • 41) 0.069 777 92 × 2 = 0 + 0.139 555 84;
  • 42) 0.139 555 84 × 2 = 0 + 0.279 111 68;
  • 43) 0.279 111 68 × 2 = 0 + 0.558 223 36;
  • 44) 0.558 223 36 × 2 = 1 + 0.116 446 72;
  • 45) 0.116 446 72 × 2 = 0 + 0.232 893 44;
  • 46) 0.232 893 44 × 2 = 0 + 0.465 786 88;
  • 47) 0.465 786 88 × 2 = 0 + 0.931 573 76;
  • 48) 0.931 573 76 × 2 = 1 + 0.863 147 52;
  • 49) 0.863 147 52 × 2 = 1 + 0.726 295 04;
  • 50) 0.726 295 04 × 2 = 1 + 0.452 590 08;
  • 51) 0.452 590 08 × 2 = 0 + 0.905 180 16;
  • 52) 0.905 180 16 × 2 = 1 + 0.810 360 32;
  • 53) 0.810 360 32 × 2 = 1 + 0.620 720 64;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.249 999 92(10) =


0.0011 1111 1111 1111 1111 1110 1010 1000 0110 0111 0001 0001 1101 1(2)


5. Positive number before normalization:

90.249 999 92(10) =


101 1010.0011 1111 1111 1111 1111 1110 1010 1000 0110 0111 0001 0001 1101 1(2)


6. Normalize the binary representation of the number.

Shift the decimal mark 6 positions to the left so that only one non zero digit remains to the left of it:


90.249 999 92(10) =


101 1010.0011 1111 1111 1111 1111 1110 1010 1000 0110 0111 0001 0001 1101 1(2) =


101 1010.0011 1111 1111 1111 1111 1110 1010 1000 0110 0111 0001 0001 1101 1(2) × 20 =


1.0110 1000 1111 1111 1111 1111 1111 1010 1010 0001 1001 1100 0100 0111 011(2) × 26


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): 6


Mantissa (not normalized):
1.0110 1000 1111 1111 1111 1111 1111 1010 1010 0001 1001 1100 0100 0111 011


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


6 + 2(11-1) - 1 =


(6 + 1 023)(10) =


1 029(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 029 ÷ 2 = 514 + 1;
  • 514 ÷ 2 = 257 + 0;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


1029(10) =


100 0000 0101(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0110 1000 1111 1111 1111 1111 1111 1010 1010 0001 1001 1100 0100 011 1011 =


0110 1000 1111 1111 1111 1111 1111 1010 1010 0001 1001 1100 0100


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0101


Mantissa (52 bits) =
0110 1000 1111 1111 1111 1111 1111 1010 1010 0001 1001 1100 0100


Number 90.249 999 92 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point:
0 - 100 0000 0101 - 0110 1000 1111 1111 1111 1111 1111 1010 1010 0001 1001 1100 0100

(64 bits IEEE 754)

More operations of this kind:

90.249 999 91 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ?

90.249 999 93 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ?


Convert to 64 bit double precision IEEE 754 binary floating point standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes one bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

90.249 999 92 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:07 UTC (GMT)
-6.259 853 398 6 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:07 UTC (GMT)
-10.663 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:06 UTC (GMT)
75.282 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:06 UTC (GMT)
18 446 744 073 709 551 629 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:06 UTC (GMT)
166.666 666 666 666 666 666 666 8 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:06 UTC (GMT)
-0.008 788 423 612 713 799 903 950 473 435 543 244 704 604 148 864 73 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:05 UTC (GMT)
0.004 166 666 666 666 5 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:05 UTC (GMT)
-34.124 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:05 UTC (GMT)
18.9 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:04 UTC (GMT)
64.76 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:04 UTC (GMT)
-3.7 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:04 UTC (GMT)
0.873 6 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point = ? May 29 16:03 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100