Decimal to 64 Bit IEEE 754 Binary: Convert Number 9.869 604 401 089 358 2 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 9.869 604 401 089 358 2(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 9.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

9(10) =


1001(2)


3. Convert to binary (base 2) the fractional part: 0.869 604 401 089 358 2.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.869 604 401 089 358 2 × 2 = 1 + 0.739 208 802 178 716 4;
  • 2) 0.739 208 802 178 716 4 × 2 = 1 + 0.478 417 604 357 432 8;
  • 3) 0.478 417 604 357 432 8 × 2 = 0 + 0.956 835 208 714 865 6;
  • 4) 0.956 835 208 714 865 6 × 2 = 1 + 0.913 670 417 429 731 2;
  • 5) 0.913 670 417 429 731 2 × 2 = 1 + 0.827 340 834 859 462 4;
  • 6) 0.827 340 834 859 462 4 × 2 = 1 + 0.654 681 669 718 924 8;
  • 7) 0.654 681 669 718 924 8 × 2 = 1 + 0.309 363 339 437 849 6;
  • 8) 0.309 363 339 437 849 6 × 2 = 0 + 0.618 726 678 875 699 2;
  • 9) 0.618 726 678 875 699 2 × 2 = 1 + 0.237 453 357 751 398 4;
  • 10) 0.237 453 357 751 398 4 × 2 = 0 + 0.474 906 715 502 796 8;
  • 11) 0.474 906 715 502 796 8 × 2 = 0 + 0.949 813 431 005 593 6;
  • 12) 0.949 813 431 005 593 6 × 2 = 1 + 0.899 626 862 011 187 2;
  • 13) 0.899 626 862 011 187 2 × 2 = 1 + 0.799 253 724 022 374 4;
  • 14) 0.799 253 724 022 374 4 × 2 = 1 + 0.598 507 448 044 748 8;
  • 15) 0.598 507 448 044 748 8 × 2 = 1 + 0.197 014 896 089 497 6;
  • 16) 0.197 014 896 089 497 6 × 2 = 0 + 0.394 029 792 178 995 2;
  • 17) 0.394 029 792 178 995 2 × 2 = 0 + 0.788 059 584 357 990 4;
  • 18) 0.788 059 584 357 990 4 × 2 = 1 + 0.576 119 168 715 980 8;
  • 19) 0.576 119 168 715 980 8 × 2 = 1 + 0.152 238 337 431 961 6;
  • 20) 0.152 238 337 431 961 6 × 2 = 0 + 0.304 476 674 863 923 2;
  • 21) 0.304 476 674 863 923 2 × 2 = 0 + 0.608 953 349 727 846 4;
  • 22) 0.608 953 349 727 846 4 × 2 = 1 + 0.217 906 699 455 692 8;
  • 23) 0.217 906 699 455 692 8 × 2 = 0 + 0.435 813 398 911 385 6;
  • 24) 0.435 813 398 911 385 6 × 2 = 0 + 0.871 626 797 822 771 2;
  • 25) 0.871 626 797 822 771 2 × 2 = 1 + 0.743 253 595 645 542 4;
  • 26) 0.743 253 595 645 542 4 × 2 = 1 + 0.486 507 191 291 084 8;
  • 27) 0.486 507 191 291 084 8 × 2 = 0 + 0.973 014 382 582 169 6;
  • 28) 0.973 014 382 582 169 6 × 2 = 1 + 0.946 028 765 164 339 2;
  • 29) 0.946 028 765 164 339 2 × 2 = 1 + 0.892 057 530 328 678 4;
  • 30) 0.892 057 530 328 678 4 × 2 = 1 + 0.784 115 060 657 356 8;
  • 31) 0.784 115 060 657 356 8 × 2 = 1 + 0.568 230 121 314 713 6;
  • 32) 0.568 230 121 314 713 6 × 2 = 1 + 0.136 460 242 629 427 2;
  • 33) 0.136 460 242 629 427 2 × 2 = 0 + 0.272 920 485 258 854 4;
  • 34) 0.272 920 485 258 854 4 × 2 = 0 + 0.545 840 970 517 708 8;
  • 35) 0.545 840 970 517 708 8 × 2 = 1 + 0.091 681 941 035 417 6;
  • 36) 0.091 681 941 035 417 6 × 2 = 0 + 0.183 363 882 070 835 2;
  • 37) 0.183 363 882 070 835 2 × 2 = 0 + 0.366 727 764 141 670 4;
  • 38) 0.366 727 764 141 670 4 × 2 = 0 + 0.733 455 528 283 340 8;
  • 39) 0.733 455 528 283 340 8 × 2 = 1 + 0.466 911 056 566 681 6;
  • 40) 0.466 911 056 566 681 6 × 2 = 0 + 0.933 822 113 133 363 2;
  • 41) 0.933 822 113 133 363 2 × 2 = 1 + 0.867 644 226 266 726 4;
  • 42) 0.867 644 226 266 726 4 × 2 = 1 + 0.735 288 452 533 452 8;
  • 43) 0.735 288 452 533 452 8 × 2 = 1 + 0.470 576 905 066 905 6;
  • 44) 0.470 576 905 066 905 6 × 2 = 0 + 0.941 153 810 133 811 2;
  • 45) 0.941 153 810 133 811 2 × 2 = 1 + 0.882 307 620 267 622 4;
  • 46) 0.882 307 620 267 622 4 × 2 = 1 + 0.764 615 240 535 244 8;
  • 47) 0.764 615 240 535 244 8 × 2 = 1 + 0.529 230 481 070 489 6;
  • 48) 0.529 230 481 070 489 6 × 2 = 1 + 0.058 460 962 140 979 2;
  • 49) 0.058 460 962 140 979 2 × 2 = 0 + 0.116 921 924 281 958 4;
  • 50) 0.116 921 924 281 958 4 × 2 = 0 + 0.233 843 848 563 916 8;
  • 51) 0.233 843 848 563 916 8 × 2 = 0 + 0.467 687 697 127 833 6;
  • 52) 0.467 687 697 127 833 6 × 2 = 0 + 0.935 375 394 255 667 2;
  • 53) 0.935 375 394 255 667 2 × 2 = 1 + 0.870 750 788 511 334 4;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.869 604 401 089 358 2(10) =


0.1101 1110 1001 1110 0110 0100 1101 1111 0010 0010 1110 1111 0000 1(2)

5. Positive number before normalization:

9.869 604 401 089 358 2(10) =


1001.1101 1110 1001 1110 0110 0100 1101 1111 0010 0010 1110 1111 0000 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 3 positions to the left, so that only one non zero digit remains to the left of it:


9.869 604 401 089 358 2(10) =


1001.1101 1110 1001 1110 0110 0100 1101 1111 0010 0010 1110 1111 0000 1(2) =


1001.1101 1110 1001 1110 0110 0100 1101 1111 0010 0010 1110 1111 0000 1(2) × 20 =


1.0011 1011 1101 0011 1100 1100 1001 1011 1110 0100 0101 1101 1110 0001(2) × 23


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 3


Mantissa (not normalized):
1.0011 1011 1101 0011 1100 1100 1001 1011 1110 0100 0101 1101 1110 0001


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


3 + 2(11-1) - 1 =


(3 + 1 023)(10) =


1 026(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 026 ÷ 2 = 513 + 0;
  • 513 ÷ 2 = 256 + 1;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1026(10) =


100 0000 0010(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0011 1011 1101 0011 1100 1100 1001 1011 1110 0100 0101 1101 1110 0001 =


0011 1011 1101 0011 1100 1100 1001 1011 1110 0100 0101 1101 1110


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0010


Mantissa (52 bits) =
0011 1011 1101 0011 1100 1100 1001 1011 1110 0100 0101 1101 1110


The base ten decimal number 9.869 604 401 089 358 2 converted and written in 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0000 0010 - 0011 1011 1101 0011 1100 1100 1001 1011 1110 0100 0101 1101 1110

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100