64bit IEEE 754: Decimal -> Double Precision Floating Point Binary: 737 869 762.948 382 064 9 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 737 869 762.948 382 064 9(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 737 869 762.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 737 869 762 ÷ 2 = 368 934 881 + 0;
  • 368 934 881 ÷ 2 = 184 467 440 + 1;
  • 184 467 440 ÷ 2 = 92 233 720 + 0;
  • 92 233 720 ÷ 2 = 46 116 860 + 0;
  • 46 116 860 ÷ 2 = 23 058 430 + 0;
  • 23 058 430 ÷ 2 = 11 529 215 + 0;
  • 11 529 215 ÷ 2 = 5 764 607 + 1;
  • 5 764 607 ÷ 2 = 2 882 303 + 1;
  • 2 882 303 ÷ 2 = 1 441 151 + 1;
  • 1 441 151 ÷ 2 = 720 575 + 1;
  • 720 575 ÷ 2 = 360 287 + 1;
  • 360 287 ÷ 2 = 180 143 + 1;
  • 180 143 ÷ 2 = 90 071 + 1;
  • 90 071 ÷ 2 = 45 035 + 1;
  • 45 035 ÷ 2 = 22 517 + 1;
  • 22 517 ÷ 2 = 11 258 + 1;
  • 11 258 ÷ 2 = 5 629 + 0;
  • 5 629 ÷ 2 = 2 814 + 1;
  • 2 814 ÷ 2 = 1 407 + 0;
  • 1 407 ÷ 2 = 703 + 1;
  • 703 ÷ 2 = 351 + 1;
  • 351 ÷ 2 = 175 + 1;
  • 175 ÷ 2 = 87 + 1;
  • 87 ÷ 2 = 43 + 1;
  • 43 ÷ 2 = 21 + 1;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


737 869 762(10) =


10 1011 1111 1010 1111 1111 1100 0010(2)


3. Convert to binary (base 2) the fractional part: 0.948 382 064 9.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.948 382 064 9 × 2 = 1 + 0.896 764 129 8;
  • 2) 0.896 764 129 8 × 2 = 1 + 0.793 528 259 6;
  • 3) 0.793 528 259 6 × 2 = 1 + 0.587 056 519 2;
  • 4) 0.587 056 519 2 × 2 = 1 + 0.174 113 038 4;
  • 5) 0.174 113 038 4 × 2 = 0 + 0.348 226 076 8;
  • 6) 0.348 226 076 8 × 2 = 0 + 0.696 452 153 6;
  • 7) 0.696 452 153 6 × 2 = 1 + 0.392 904 307 2;
  • 8) 0.392 904 307 2 × 2 = 0 + 0.785 808 614 4;
  • 9) 0.785 808 614 4 × 2 = 1 + 0.571 617 228 8;
  • 10) 0.571 617 228 8 × 2 = 1 + 0.143 234 457 6;
  • 11) 0.143 234 457 6 × 2 = 0 + 0.286 468 915 2;
  • 12) 0.286 468 915 2 × 2 = 0 + 0.572 937 830 4;
  • 13) 0.572 937 830 4 × 2 = 1 + 0.145 875 660 8;
  • 14) 0.145 875 660 8 × 2 = 0 + 0.291 751 321 6;
  • 15) 0.291 751 321 6 × 2 = 0 + 0.583 502 643 2;
  • 16) 0.583 502 643 2 × 2 = 1 + 0.167 005 286 4;
  • 17) 0.167 005 286 4 × 2 = 0 + 0.334 010 572 8;
  • 18) 0.334 010 572 8 × 2 = 0 + 0.668 021 145 6;
  • 19) 0.668 021 145 6 × 2 = 1 + 0.336 042 291 2;
  • 20) 0.336 042 291 2 × 2 = 0 + 0.672 084 582 4;
  • 21) 0.672 084 582 4 × 2 = 1 + 0.344 169 164 8;
  • 22) 0.344 169 164 8 × 2 = 0 + 0.688 338 329 6;
  • 23) 0.688 338 329 6 × 2 = 1 + 0.376 676 659 2;
  • 24) 0.376 676 659 2 × 2 = 0 + 0.753 353 318 4;
  • 25) 0.753 353 318 4 × 2 = 1 + 0.506 706 636 8;
  • 26) 0.506 706 636 8 × 2 = 1 + 0.013 413 273 6;
  • 27) 0.013 413 273 6 × 2 = 0 + 0.026 826 547 2;
  • 28) 0.026 826 547 2 × 2 = 0 + 0.053 653 094 4;
  • 29) 0.053 653 094 4 × 2 = 0 + 0.107 306 188 8;
  • 30) 0.107 306 188 8 × 2 = 0 + 0.214 612 377 6;
  • 31) 0.214 612 377 6 × 2 = 0 + 0.429 224 755 2;
  • 32) 0.429 224 755 2 × 2 = 0 + 0.858 449 510 4;
  • 33) 0.858 449 510 4 × 2 = 1 + 0.716 899 020 8;
  • 34) 0.716 899 020 8 × 2 = 1 + 0.433 798 041 6;
  • 35) 0.433 798 041 6 × 2 = 0 + 0.867 596 083 2;
  • 36) 0.867 596 083 2 × 2 = 1 + 0.735 192 166 4;
  • 37) 0.735 192 166 4 × 2 = 1 + 0.470 384 332 8;
  • 38) 0.470 384 332 8 × 2 = 0 + 0.940 768 665 6;
  • 39) 0.940 768 665 6 × 2 = 1 + 0.881 537 331 2;
  • 40) 0.881 537 331 2 × 2 = 1 + 0.763 074 662 4;
  • 41) 0.763 074 662 4 × 2 = 1 + 0.526 149 324 8;
  • 42) 0.526 149 324 8 × 2 = 1 + 0.052 298 649 6;
  • 43) 0.052 298 649 6 × 2 = 0 + 0.104 597 299 2;
  • 44) 0.104 597 299 2 × 2 = 0 + 0.209 194 598 4;
  • 45) 0.209 194 598 4 × 2 = 0 + 0.418 389 196 8;
  • 46) 0.418 389 196 8 × 2 = 0 + 0.836 778 393 6;
  • 47) 0.836 778 393 6 × 2 = 1 + 0.673 556 787 2;
  • 48) 0.673 556 787 2 × 2 = 1 + 0.347 113 574 4;
  • 49) 0.347 113 574 4 × 2 = 0 + 0.694 227 148 8;
  • 50) 0.694 227 148 8 × 2 = 1 + 0.388 454 297 6;
  • 51) 0.388 454 297 6 × 2 = 0 + 0.776 908 595 2;
  • 52) 0.776 908 595 2 × 2 = 1 + 0.553 817 190 4;
  • 53) 0.553 817 190 4 × 2 = 1 + 0.107 634 380 8;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.948 382 064 9(10) =


0.1111 0010 1100 1001 0010 1010 1100 0000 1101 1011 1100 0011 0101 1(2)


5. Positive number before normalization:

737 869 762.948 382 064 9(10) =


10 1011 1111 1010 1111 1111 1100 0010.1111 0010 1100 1001 0010 1010 1100 0000 1101 1011 1100 0011 0101 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 29 positions to the left, so that only one non zero digit remains to the left of it:


737 869 762.948 382 064 9(10) =


10 1011 1111 1010 1111 1111 1100 0010.1111 0010 1100 1001 0010 1010 1100 0000 1101 1011 1100 0011 0101 1(2) =


10 1011 1111 1010 1111 1111 1100 0010.1111 0010 1100 1001 0010 1010 1100 0000 1101 1011 1100 0011 0101 1(2) × 20 =


1.0101 1111 1101 0111 1111 1110 0001 0111 1001 0110 0100 1001 0101 0110 0000 0110 1101 1110 0001 1010 11(2) × 229


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 29


Mantissa (not normalized):
1.0101 1111 1101 0111 1111 1110 0001 0111 1001 0110 0100 1001 0101 0110 0000 0110 1101 1110 0001 1010 11


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


29 + 2(11-1) - 1 =


(29 + 1 023)(10) =


1 052(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 052 ÷ 2 = 526 + 0;
  • 526 ÷ 2 = 263 + 0;
  • 263 ÷ 2 = 131 + 1;
  • 131 ÷ 2 = 65 + 1;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1052(10) =


100 0001 1100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0101 1111 1101 0111 1111 1110 0001 0111 1001 0110 0100 1001 0101 01 1000 0001 1011 0111 1000 0110 1011 =


0101 1111 1101 0111 1111 1110 0001 0111 1001 0110 0100 1001 0101


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0001 1100


Mantissa (52 bits) =
0101 1111 1101 0111 1111 1110 0001 0111 1001 0110 0100 1001 0101


The base ten decimal number 737 869 762.948 382 064 9 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0001 1100 - 0101 1111 1101 0111 1111 1110 0001 0111 1001 0110 0100 1001 0101

(64 bits IEEE 754)
  • Sign (1 bit):

    • 0

      63
  • Exponent (11 bits):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 0

      58
    • 0

      57
    • 1

      56
    • 1

      55
    • 1

      54
    • 0

      53
    • 0

      52
  • Mantissa (52 bits):

    • 0

      51
    • 1

      50
    • 0

      49
    • 1

      48
    • 1

      47
    • 1

      46
    • 1

      45
    • 1

      44
    • 1

      43
    • 1

      42
    • 0

      41
    • 1

      40
    • 0

      39
    • 1

      38
    • 1

      37
    • 1

      36
    • 1

      35
    • 1

      34
    • 1

      33
    • 1

      32
    • 1

      31
    • 1

      30
    • 1

      29
    • 0

      28
    • 0

      27
    • 0

      26
    • 0

      25
    • 1

      24
    • 0

      23
    • 1

      22
    • 1

      21
    • 1

      20
    • 1

      19
    • 0

      18
    • 0

      17
    • 1

      16
    • 0

      15
    • 1

      14
    • 1

      13
    • 0

      12
    • 0

      11
    • 1

      10
    • 0

      9
    • 0

      8
    • 1

      7
    • 0

      6
    • 0

      5
    • 1

      4
    • 0

      3
    • 1

      2
    • 0

      1
    • 1

      0

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 737 869 762.948 382 064 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number 4.368 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number -0.000 000 017 181 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number -25 231 319 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number -0.000 000 000 000 12 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number 2 251 799 813 685 313 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number 2.718 281 828 459 045 235 360 287 471 352 662 497 757 247 093 699 959 574 966 967 627 729 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number 1 010 101 051 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:31 UTC (GMT)
Number 599 966 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:30 UTC (GMT)
Number -45 474 616 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:30 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100