64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 736 914.944 01 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 736 914.944 01(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 736 914.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 736 914 ÷ 2 = 368 457 + 0;
  • 368 457 ÷ 2 = 184 228 + 1;
  • 184 228 ÷ 2 = 92 114 + 0;
  • 92 114 ÷ 2 = 46 057 + 0;
  • 46 057 ÷ 2 = 23 028 + 1;
  • 23 028 ÷ 2 = 11 514 + 0;
  • 11 514 ÷ 2 = 5 757 + 0;
  • 5 757 ÷ 2 = 2 878 + 1;
  • 2 878 ÷ 2 = 1 439 + 0;
  • 1 439 ÷ 2 = 719 + 1;
  • 719 ÷ 2 = 359 + 1;
  • 359 ÷ 2 = 179 + 1;
  • 179 ÷ 2 = 89 + 1;
  • 89 ÷ 2 = 44 + 1;
  • 44 ÷ 2 = 22 + 0;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


736 914(10) =


1011 0011 1110 1001 0010(2)


3. Convert to binary (base 2) the fractional part: 0.944 01.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.944 01 × 2 = 1 + 0.888 02;
  • 2) 0.888 02 × 2 = 1 + 0.776 04;
  • 3) 0.776 04 × 2 = 1 + 0.552 08;
  • 4) 0.552 08 × 2 = 1 + 0.104 16;
  • 5) 0.104 16 × 2 = 0 + 0.208 32;
  • 6) 0.208 32 × 2 = 0 + 0.416 64;
  • 7) 0.416 64 × 2 = 0 + 0.833 28;
  • 8) 0.833 28 × 2 = 1 + 0.666 56;
  • 9) 0.666 56 × 2 = 1 + 0.333 12;
  • 10) 0.333 12 × 2 = 0 + 0.666 24;
  • 11) 0.666 24 × 2 = 1 + 0.332 48;
  • 12) 0.332 48 × 2 = 0 + 0.664 96;
  • 13) 0.664 96 × 2 = 1 + 0.329 92;
  • 14) 0.329 92 × 2 = 0 + 0.659 84;
  • 15) 0.659 84 × 2 = 1 + 0.319 68;
  • 16) 0.319 68 × 2 = 0 + 0.639 36;
  • 17) 0.639 36 × 2 = 1 + 0.278 72;
  • 18) 0.278 72 × 2 = 0 + 0.557 44;
  • 19) 0.557 44 × 2 = 1 + 0.114 88;
  • 20) 0.114 88 × 2 = 0 + 0.229 76;
  • 21) 0.229 76 × 2 = 0 + 0.459 52;
  • 22) 0.459 52 × 2 = 0 + 0.919 04;
  • 23) 0.919 04 × 2 = 1 + 0.838 08;
  • 24) 0.838 08 × 2 = 1 + 0.676 16;
  • 25) 0.676 16 × 2 = 1 + 0.352 32;
  • 26) 0.352 32 × 2 = 0 + 0.704 64;
  • 27) 0.704 64 × 2 = 1 + 0.409 28;
  • 28) 0.409 28 × 2 = 0 + 0.818 56;
  • 29) 0.818 56 × 2 = 1 + 0.637 12;
  • 30) 0.637 12 × 2 = 1 + 0.274 24;
  • 31) 0.274 24 × 2 = 0 + 0.548 48;
  • 32) 0.548 48 × 2 = 1 + 0.096 96;
  • 33) 0.096 96 × 2 = 0 + 0.193 92;
  • 34) 0.193 92 × 2 = 0 + 0.387 84;
  • 35) 0.387 84 × 2 = 0 + 0.775 68;
  • 36) 0.775 68 × 2 = 1 + 0.551 36;
  • 37) 0.551 36 × 2 = 1 + 0.102 72;
  • 38) 0.102 72 × 2 = 0 + 0.205 44;
  • 39) 0.205 44 × 2 = 0 + 0.410 88;
  • 40) 0.410 88 × 2 = 0 + 0.821 76;
  • 41) 0.821 76 × 2 = 1 + 0.643 52;
  • 42) 0.643 52 × 2 = 1 + 0.287 04;
  • 43) 0.287 04 × 2 = 0 + 0.574 08;
  • 44) 0.574 08 × 2 = 1 + 0.148 16;
  • 45) 0.148 16 × 2 = 0 + 0.296 32;
  • 46) 0.296 32 × 2 = 0 + 0.592 64;
  • 47) 0.592 64 × 2 = 1 + 0.185 28;
  • 48) 0.185 28 × 2 = 0 + 0.370 56;
  • 49) 0.370 56 × 2 = 0 + 0.741 12;
  • 50) 0.741 12 × 2 = 1 + 0.482 24;
  • 51) 0.482 24 × 2 = 0 + 0.964 48;
  • 52) 0.964 48 × 2 = 1 + 0.928 96;
  • 53) 0.928 96 × 2 = 1 + 0.857 92;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.944 01(10) =


0.1111 0001 1010 1010 1010 0011 1010 1101 0001 1000 1101 0010 0101 1(2)


5. Positive number before normalization:

736 914.944 01(10) =


1011 0011 1110 1001 0010.1111 0001 1010 1010 1010 0011 1010 1101 0001 1000 1101 0010 0101 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 19 positions to the left, so that only one non zero digit remains to the left of it:


736 914.944 01(10) =


1011 0011 1110 1001 0010.1111 0001 1010 1010 1010 0011 1010 1101 0001 1000 1101 0010 0101 1(2) =


1011 0011 1110 1001 0010.1111 0001 1010 1010 1010 0011 1010 1101 0001 1000 1101 0010 0101 1(2) × 20 =


1.0110 0111 1101 0010 0101 1110 0011 0101 0101 0100 0111 0101 1010 0011 0001 1010 0100 1011(2) × 219


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 19


Mantissa (not normalized):
1.0110 0111 1101 0010 0101 1110 0011 0101 0101 0100 0111 0101 1010 0011 0001 1010 0100 1011


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


19 + 2(11-1) - 1 =


(19 + 1 023)(10) =


1 042(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 042 ÷ 2 = 521 + 0;
  • 521 ÷ 2 = 260 + 1;
  • 260 ÷ 2 = 130 + 0;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1042(10) =


100 0001 0010(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0110 0111 1101 0010 0101 1110 0011 0101 0101 0100 0111 0101 1010 0011 0001 1010 0100 1011 =


0110 0111 1101 0010 0101 1110 0011 0101 0101 0100 0111 0101 1010


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0001 0010


Mantissa (52 bits) =
0110 0111 1101 0010 0101 1110 0011 0101 0101 0100 0111 0101 1010


The base ten decimal number 736 914.944 01 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0001 0010 - 0110 0111 1101 0010 0101 1110 0011 0101 0101 0100 0111 0101 1010

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 50 610 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:38 UTC (GMT)
Number 2.356 194 490 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:38 UTC (GMT)
Number -4 602 461 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:38 UTC (GMT)
Number 74 707 070 698 086 677 779 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:38 UTC (GMT)
Number 1 125 899 906 842 540 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:38 UTC (GMT)
Number 11 782 164 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:37 UTC (GMT)
Number 44 036.785 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:37 UTC (GMT)
Number 7.200 000 000 000 000 177 635 683 940 025 046 467 789 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:37 UTC (GMT)
Number 35 475 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:37 UTC (GMT)
Number 9 007 199 254 737 898 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard May 21 14:37 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100