64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 7.200 000 000 000 000 177 635 683 940 025 046 467 781 06 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 7.200 000 000 000 000 177 635 683 940 025 046 467 781 06(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 7.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


7(10) =


111(2)


3. Convert to binary (base 2) the fractional part: 0.200 000 000 000 000 177 635 683 940 025 046 467 781 06.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.200 000 000 000 000 177 635 683 940 025 046 467 781 06 × 2 = 0 + 0.400 000 000 000 000 355 271 367 880 050 092 935 562 12;
  • 2) 0.400 000 000 000 000 355 271 367 880 050 092 935 562 12 × 2 = 0 + 0.800 000 000 000 000 710 542 735 760 100 185 871 124 24;
  • 3) 0.800 000 000 000 000 710 542 735 760 100 185 871 124 24 × 2 = 1 + 0.600 000 000 000 001 421 085 471 520 200 371 742 248 48;
  • 4) 0.600 000 000 000 001 421 085 471 520 200 371 742 248 48 × 2 = 1 + 0.200 000 000 000 002 842 170 943 040 400 743 484 496 96;
  • 5) 0.200 000 000 000 002 842 170 943 040 400 743 484 496 96 × 2 = 0 + 0.400 000 000 000 005 684 341 886 080 801 486 968 993 92;
  • 6) 0.400 000 000 000 005 684 341 886 080 801 486 968 993 92 × 2 = 0 + 0.800 000 000 000 011 368 683 772 161 602 973 937 987 84;
  • 7) 0.800 000 000 000 011 368 683 772 161 602 973 937 987 84 × 2 = 1 + 0.600 000 000 000 022 737 367 544 323 205 947 875 975 68;
  • 8) 0.600 000 000 000 022 737 367 544 323 205 947 875 975 68 × 2 = 1 + 0.200 000 000 000 045 474 735 088 646 411 895 751 951 36;
  • 9) 0.200 000 000 000 045 474 735 088 646 411 895 751 951 36 × 2 = 0 + 0.400 000 000 000 090 949 470 177 292 823 791 503 902 72;
  • 10) 0.400 000 000 000 090 949 470 177 292 823 791 503 902 72 × 2 = 0 + 0.800 000 000 000 181 898 940 354 585 647 583 007 805 44;
  • 11) 0.800 000 000 000 181 898 940 354 585 647 583 007 805 44 × 2 = 1 + 0.600 000 000 000 363 797 880 709 171 295 166 015 610 88;
  • 12) 0.600 000 000 000 363 797 880 709 171 295 166 015 610 88 × 2 = 1 + 0.200 000 000 000 727 595 761 418 342 590 332 031 221 76;
  • 13) 0.200 000 000 000 727 595 761 418 342 590 332 031 221 76 × 2 = 0 + 0.400 000 000 001 455 191 522 836 685 180 664 062 443 52;
  • 14) 0.400 000 000 001 455 191 522 836 685 180 664 062 443 52 × 2 = 0 + 0.800 000 000 002 910 383 045 673 370 361 328 124 887 04;
  • 15) 0.800 000 000 002 910 383 045 673 370 361 328 124 887 04 × 2 = 1 + 0.600 000 000 005 820 766 091 346 740 722 656 249 774 08;
  • 16) 0.600 000 000 005 820 766 091 346 740 722 656 249 774 08 × 2 = 1 + 0.200 000 000 011 641 532 182 693 481 445 312 499 548 16;
  • 17) 0.200 000 000 011 641 532 182 693 481 445 312 499 548 16 × 2 = 0 + 0.400 000 000 023 283 064 365 386 962 890 624 999 096 32;
  • 18) 0.400 000 000 023 283 064 365 386 962 890 624 999 096 32 × 2 = 0 + 0.800 000 000 046 566 128 730 773 925 781 249 998 192 64;
  • 19) 0.800 000 000 046 566 128 730 773 925 781 249 998 192 64 × 2 = 1 + 0.600 000 000 093 132 257 461 547 851 562 499 996 385 28;
  • 20) 0.600 000 000 093 132 257 461 547 851 562 499 996 385 28 × 2 = 1 + 0.200 000 000 186 264 514 923 095 703 124 999 992 770 56;
  • 21) 0.200 000 000 186 264 514 923 095 703 124 999 992 770 56 × 2 = 0 + 0.400 000 000 372 529 029 846 191 406 249 999 985 541 12;
  • 22) 0.400 000 000 372 529 029 846 191 406 249 999 985 541 12 × 2 = 0 + 0.800 000 000 745 058 059 692 382 812 499 999 971 082 24;
  • 23) 0.800 000 000 745 058 059 692 382 812 499 999 971 082 24 × 2 = 1 + 0.600 000 001 490 116 119 384 765 624 999 999 942 164 48;
  • 24) 0.600 000 001 490 116 119 384 765 624 999 999 942 164 48 × 2 = 1 + 0.200 000 002 980 232 238 769 531 249 999 999 884 328 96;
  • 25) 0.200 000 002 980 232 238 769 531 249 999 999 884 328 96 × 2 = 0 + 0.400 000 005 960 464 477 539 062 499 999 999 768 657 92;
  • 26) 0.400 000 005 960 464 477 539 062 499 999 999 768 657 92 × 2 = 0 + 0.800 000 011 920 928 955 078 124 999 999 999 537 315 84;
  • 27) 0.800 000 011 920 928 955 078 124 999 999 999 537 315 84 × 2 = 1 + 0.600 000 023 841 857 910 156 249 999 999 999 074 631 68;
  • 28) 0.600 000 023 841 857 910 156 249 999 999 999 074 631 68 × 2 = 1 + 0.200 000 047 683 715 820 312 499 999 999 998 149 263 36;
  • 29) 0.200 000 047 683 715 820 312 499 999 999 998 149 263 36 × 2 = 0 + 0.400 000 095 367 431 640 624 999 999 999 996 298 526 72;
  • 30) 0.400 000 095 367 431 640 624 999 999 999 996 298 526 72 × 2 = 0 + 0.800 000 190 734 863 281 249 999 999 999 992 597 053 44;
  • 31) 0.800 000 190 734 863 281 249 999 999 999 992 597 053 44 × 2 = 1 + 0.600 000 381 469 726 562 499 999 999 999 985 194 106 88;
  • 32) 0.600 000 381 469 726 562 499 999 999 999 985 194 106 88 × 2 = 1 + 0.200 000 762 939 453 124 999 999 999 999 970 388 213 76;
  • 33) 0.200 000 762 939 453 124 999 999 999 999 970 388 213 76 × 2 = 0 + 0.400 001 525 878 906 249 999 999 999 999 940 776 427 52;
  • 34) 0.400 001 525 878 906 249 999 999 999 999 940 776 427 52 × 2 = 0 + 0.800 003 051 757 812 499 999 999 999 999 881 552 855 04;
  • 35) 0.800 003 051 757 812 499 999 999 999 999 881 552 855 04 × 2 = 1 + 0.600 006 103 515 624 999 999 999 999 999 763 105 710 08;
  • 36) 0.600 006 103 515 624 999 999 999 999 999 763 105 710 08 × 2 = 1 + 0.200 012 207 031 249 999 999 999 999 999 526 211 420 16;
  • 37) 0.200 012 207 031 249 999 999 999 999 999 526 211 420 16 × 2 = 0 + 0.400 024 414 062 499 999 999 999 999 999 052 422 840 32;
  • 38) 0.400 024 414 062 499 999 999 999 999 999 052 422 840 32 × 2 = 0 + 0.800 048 828 124 999 999 999 999 999 998 104 845 680 64;
  • 39) 0.800 048 828 124 999 999 999 999 999 998 104 845 680 64 × 2 = 1 + 0.600 097 656 249 999 999 999 999 999 996 209 691 361 28;
  • 40) 0.600 097 656 249 999 999 999 999 999 996 209 691 361 28 × 2 = 1 + 0.200 195 312 499 999 999 999 999 999 992 419 382 722 56;
  • 41) 0.200 195 312 499 999 999 999 999 999 992 419 382 722 56 × 2 = 0 + 0.400 390 624 999 999 999 999 999 999 984 838 765 445 12;
  • 42) 0.400 390 624 999 999 999 999 999 999 984 838 765 445 12 × 2 = 0 + 0.800 781 249 999 999 999 999 999 999 969 677 530 890 24;
  • 43) 0.800 781 249 999 999 999 999 999 999 969 677 530 890 24 × 2 = 1 + 0.601 562 499 999 999 999 999 999 999 939 355 061 780 48;
  • 44) 0.601 562 499 999 999 999 999 999 999 939 355 061 780 48 × 2 = 1 + 0.203 124 999 999 999 999 999 999 999 878 710 123 560 96;
  • 45) 0.203 124 999 999 999 999 999 999 999 878 710 123 560 96 × 2 = 0 + 0.406 249 999 999 999 999 999 999 999 757 420 247 121 92;
  • 46) 0.406 249 999 999 999 999 999 999 999 757 420 247 121 92 × 2 = 0 + 0.812 499 999 999 999 999 999 999 999 514 840 494 243 84;
  • 47) 0.812 499 999 999 999 999 999 999 999 514 840 494 243 84 × 2 = 1 + 0.624 999 999 999 999 999 999 999 999 029 680 988 487 68;
  • 48) 0.624 999 999 999 999 999 999 999 999 029 680 988 487 68 × 2 = 1 + 0.249 999 999 999 999 999 999 999 998 059 361 976 975 36;
  • 49) 0.249 999 999 999 999 999 999 999 998 059 361 976 975 36 × 2 = 0 + 0.499 999 999 999 999 999 999 999 996 118 723 953 950 72;
  • 50) 0.499 999 999 999 999 999 999 999 996 118 723 953 950 72 × 2 = 0 + 0.999 999 999 999 999 999 999 999 992 237 447 907 901 44;
  • 51) 0.999 999 999 999 999 999 999 999 992 237 447 907 901 44 × 2 = 1 + 0.999 999 999 999 999 999 999 999 984 474 895 815 802 88;
  • 52) 0.999 999 999 999 999 999 999 999 984 474 895 815 802 88 × 2 = 1 + 0.999 999 999 999 999 999 999 999 968 949 791 631 605 76;
  • 53) 0.999 999 999 999 999 999 999 999 968 949 791 631 605 76 × 2 = 1 + 0.999 999 999 999 999 999 999 999 937 899 583 263 211 52;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.200 000 000 000 000 177 635 683 940 025 046 467 781 06(10) =


0.0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 1(2)


5. Positive number before normalization:

7.200 000 000 000 000 177 635 683 940 025 046 467 781 06(10) =


111.0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 2 positions to the left, so that only one non zero digit remains to the left of it:


7.200 000 000 000 000 177 635 683 940 025 046 467 781 06(10) =


111.0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 1(2) =


111.0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 1(2) × 20 =


1.1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 111(2) × 22


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 2


Mantissa (not normalized):
1.1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


2 + 2(11-1) - 1 =


(2 + 1 023)(10) =


1 025(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 025 ÷ 2 = 512 + 1;
  • 512 ÷ 2 = 256 + 0;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1025(10) =


100 0000 0001(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 111 =


1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0001


Mantissa (52 bits) =
1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100


The base ten decimal number 7.200 000 000 000 000 177 635 683 940 025 046 467 781 06 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 0001 - 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1.214 35 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:34 UTC (GMT)
Number 123 322 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:34 UTC (GMT)
Number -170 206 941 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:34 UTC (GMT)
Number 2 147 484 806 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:33 UTC (GMT)
Number 10 711 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:33 UTC (GMT)
Number 77 341 244 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:33 UTC (GMT)
Number 0.738 413 072 969 749 658 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:33 UTC (GMT)
Number 42.341 749 99 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:33 UTC (GMT)
Number -33 906.693 092 6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:33 UTC (GMT)
Number 91 161 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 00:33 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100