Decimal to 64 Bit IEEE 754 Binary: Convert Number 4 652 183 230 701 634 019 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 4 652 183 230 701 634 019(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 4 652 183 230 701 634 019 ÷ 2 = 2 326 091 615 350 817 009 + 1;
  • 2 326 091 615 350 817 009 ÷ 2 = 1 163 045 807 675 408 504 + 1;
  • 1 163 045 807 675 408 504 ÷ 2 = 581 522 903 837 704 252 + 0;
  • 581 522 903 837 704 252 ÷ 2 = 290 761 451 918 852 126 + 0;
  • 290 761 451 918 852 126 ÷ 2 = 145 380 725 959 426 063 + 0;
  • 145 380 725 959 426 063 ÷ 2 = 72 690 362 979 713 031 + 1;
  • 72 690 362 979 713 031 ÷ 2 = 36 345 181 489 856 515 + 1;
  • 36 345 181 489 856 515 ÷ 2 = 18 172 590 744 928 257 + 1;
  • 18 172 590 744 928 257 ÷ 2 = 9 086 295 372 464 128 + 1;
  • 9 086 295 372 464 128 ÷ 2 = 4 543 147 686 232 064 + 0;
  • 4 543 147 686 232 064 ÷ 2 = 2 271 573 843 116 032 + 0;
  • 2 271 573 843 116 032 ÷ 2 = 1 135 786 921 558 016 + 0;
  • 1 135 786 921 558 016 ÷ 2 = 567 893 460 779 008 + 0;
  • 567 893 460 779 008 ÷ 2 = 283 946 730 389 504 + 0;
  • 283 946 730 389 504 ÷ 2 = 141 973 365 194 752 + 0;
  • 141 973 365 194 752 ÷ 2 = 70 986 682 597 376 + 0;
  • 70 986 682 597 376 ÷ 2 = 35 493 341 298 688 + 0;
  • 35 493 341 298 688 ÷ 2 = 17 746 670 649 344 + 0;
  • 17 746 670 649 344 ÷ 2 = 8 873 335 324 672 + 0;
  • 8 873 335 324 672 ÷ 2 = 4 436 667 662 336 + 0;
  • 4 436 667 662 336 ÷ 2 = 2 218 333 831 168 + 0;
  • 2 218 333 831 168 ÷ 2 = 1 109 166 915 584 + 0;
  • 1 109 166 915 584 ÷ 2 = 554 583 457 792 + 0;
  • 554 583 457 792 ÷ 2 = 277 291 728 896 + 0;
  • 277 291 728 896 ÷ 2 = 138 645 864 448 + 0;
  • 138 645 864 448 ÷ 2 = 69 322 932 224 + 0;
  • 69 322 932 224 ÷ 2 = 34 661 466 112 + 0;
  • 34 661 466 112 ÷ 2 = 17 330 733 056 + 0;
  • 17 330 733 056 ÷ 2 = 8 665 366 528 + 0;
  • 8 665 366 528 ÷ 2 = 4 332 683 264 + 0;
  • 4 332 683 264 ÷ 2 = 2 166 341 632 + 0;
  • 2 166 341 632 ÷ 2 = 1 083 170 816 + 0;
  • 1 083 170 816 ÷ 2 = 541 585 408 + 0;
  • 541 585 408 ÷ 2 = 270 792 704 + 0;
  • 270 792 704 ÷ 2 = 135 396 352 + 0;
  • 135 396 352 ÷ 2 = 67 698 176 + 0;
  • 67 698 176 ÷ 2 = 33 849 088 + 0;
  • 33 849 088 ÷ 2 = 16 924 544 + 0;
  • 16 924 544 ÷ 2 = 8 462 272 + 0;
  • 8 462 272 ÷ 2 = 4 231 136 + 0;
  • 4 231 136 ÷ 2 = 2 115 568 + 0;
  • 2 115 568 ÷ 2 = 1 057 784 + 0;
  • 1 057 784 ÷ 2 = 528 892 + 0;
  • 528 892 ÷ 2 = 264 446 + 0;
  • 264 446 ÷ 2 = 132 223 + 0;
  • 132 223 ÷ 2 = 66 111 + 1;
  • 66 111 ÷ 2 = 33 055 + 1;
  • 33 055 ÷ 2 = 16 527 + 1;
  • 16 527 ÷ 2 = 8 263 + 1;
  • 8 263 ÷ 2 = 4 131 + 1;
  • 4 131 ÷ 2 = 2 065 + 1;
  • 2 065 ÷ 2 = 1 032 + 1;
  • 1 032 ÷ 2 = 516 + 0;
  • 516 ÷ 2 = 258 + 0;
  • 258 ÷ 2 = 129 + 0;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

4 652 183 230 701 634 019(10) =


100 0000 1000 1111 1110 0000 0000 0000 0000 0000 0000 0000 0000 0001 1110 0011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 62 positions to the left, so that only one non zero digit remains to the left of it:


4 652 183 230 701 634 019(10) =


100 0000 1000 1111 1110 0000 0000 0000 0000 0000 0000 0000 0000 0001 1110 0011(2) =


100 0000 1000 1111 1110 0000 0000 0000 0000 0000 0000 0000 0000 0001 1110 0011(2) × 20 =


1.0000 0010 0011 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0111 1000 11(2) × 262


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 62


Mantissa (not normalized):
1.0000 0010 0011 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0111 1000 11


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


62 + 2(11-1) - 1 =


(62 + 1 023)(10) =


1 085(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 085 ÷ 2 = 542 + 1;
  • 542 ÷ 2 = 271 + 0;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1085(10) =


100 0011 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0000 0010 0011 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 01 1110 0011 =


0000 0010 0011 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1101


Mantissa (52 bits) =
0000 0010 0011 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 4 652 183 230 701 634 019 converted and written in 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0011 1101 - 0000 0010 0011 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100