Convert the Number 43 362 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 43 362(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 43 362 ÷ 2 = 21 681 + 0;
  • 21 681 ÷ 2 = 10 840 + 1;
  • 10 840 ÷ 2 = 5 420 + 0;
  • 5 420 ÷ 2 = 2 710 + 0;
  • 2 710 ÷ 2 = 1 355 + 0;
  • 1 355 ÷ 2 = 677 + 1;
  • 677 ÷ 2 = 338 + 1;
  • 338 ÷ 2 = 169 + 0;
  • 169 ÷ 2 = 84 + 1;
  • 84 ÷ 2 = 42 + 0;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


43 362(10) =


1010 1001 0110 0010(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 15 positions to the left, so that only one non zero digit remains to the left of it:


43 362(10) =


1010 1001 0110 0010(2) =


1010 1001 0110 0010(2) × 20 =


1.0101 0010 1100 010(2) × 215


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 15


Mantissa (not normalized):
1.0101 0010 1100 010


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


15 + 2(11-1) - 1 =


(15 + 1 023)(10) =


1 038(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 038 ÷ 2 = 519 + 0;
  • 519 ÷ 2 = 259 + 1;
  • 259 ÷ 2 = 129 + 1;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1038(10) =


100 0000 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 010 1001 0110 0010 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


0101 0010 1100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 1110


Mantissa (52 bits) =
0101 0010 1100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 43 362 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 1110 - 0101 0010 1100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number 43 361 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 43 363 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 43 362 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:39 UTC (GMT)
Number -0.666 668 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:39 UTC (GMT)
Number -4 856.548 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:38 UTC (GMT)
Number 1 245 587 445 871 429 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:38 UTC (GMT)
Number 50.569 600 888 243 378 733 477 584 319 189 190 864 562 985 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:38 UTC (GMT)
Number 7 196 707 636 977 221 638 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:38 UTC (GMT)
Number 20 082 297 932 647 991 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:38 UTC (GMT)
Number -22.143 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:36 UTC (GMT)
Number 6.81 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:36 UTC (GMT)
Number 0.000 000 000 232 830 646 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:36 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal