Convert the Number 400 100 100 096 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 400 100 100 096(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 400 100 100 096 ÷ 2 = 200 050 050 048 + 0;
  • 200 050 050 048 ÷ 2 = 100 025 025 024 + 0;
  • 100 025 025 024 ÷ 2 = 50 012 512 512 + 0;
  • 50 012 512 512 ÷ 2 = 25 006 256 256 + 0;
  • 25 006 256 256 ÷ 2 = 12 503 128 128 + 0;
  • 12 503 128 128 ÷ 2 = 6 251 564 064 + 0;
  • 6 251 564 064 ÷ 2 = 3 125 782 032 + 0;
  • 3 125 782 032 ÷ 2 = 1 562 891 016 + 0;
  • 1 562 891 016 ÷ 2 = 781 445 508 + 0;
  • 781 445 508 ÷ 2 = 390 722 754 + 0;
  • 390 722 754 ÷ 2 = 195 361 377 + 0;
  • 195 361 377 ÷ 2 = 97 680 688 + 1;
  • 97 680 688 ÷ 2 = 48 840 344 + 0;
  • 48 840 344 ÷ 2 = 24 420 172 + 0;
  • 24 420 172 ÷ 2 = 12 210 086 + 0;
  • 12 210 086 ÷ 2 = 6 105 043 + 0;
  • 6 105 043 ÷ 2 = 3 052 521 + 1;
  • 3 052 521 ÷ 2 = 1 526 260 + 1;
  • 1 526 260 ÷ 2 = 763 130 + 0;
  • 763 130 ÷ 2 = 381 565 + 0;
  • 381 565 ÷ 2 = 190 782 + 1;
  • 190 782 ÷ 2 = 95 391 + 0;
  • 95 391 ÷ 2 = 47 695 + 1;
  • 47 695 ÷ 2 = 23 847 + 1;
  • 23 847 ÷ 2 = 11 923 + 1;
  • 11 923 ÷ 2 = 5 961 + 1;
  • 5 961 ÷ 2 = 2 980 + 1;
  • 2 980 ÷ 2 = 1 490 + 0;
  • 1 490 ÷ 2 = 745 + 0;
  • 745 ÷ 2 = 372 + 1;
  • 372 ÷ 2 = 186 + 0;
  • 186 ÷ 2 = 93 + 0;
  • 93 ÷ 2 = 46 + 1;
  • 46 ÷ 2 = 23 + 0;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


400 100 100 096(10) =


101 1101 0010 0111 1101 0011 0000 1000 0000 0000(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 38 positions to the left, so that only one non zero digit remains to the left of it:


400 100 100 096(10) =


101 1101 0010 0111 1101 0011 0000 1000 0000 0000(2) =


101 1101 0010 0111 1101 0011 0000 1000 0000 0000(2) × 20 =


1.0111 0100 1001 1111 0100 1100 0010 0000 0000 00(2) × 238


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 38


Mantissa (not normalized):
1.0111 0100 1001 1111 0100 1100 0010 0000 0000 00


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


38 + 2(11-1) - 1 =


(38 + 1 023)(10) =


1 061(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 061 ÷ 2 = 530 + 1;
  • 530 ÷ 2 = 265 + 0;
  • 265 ÷ 2 = 132 + 1;
  • 132 ÷ 2 = 66 + 0;
  • 66 ÷ 2 = 33 + 0;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1061(10) =


100 0010 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 01 1101 0010 0111 1101 0011 0000 1000 0000 0000 00 0000 0000 0000 =


0111 0100 1001 1111 0100 1100 0010 0000 0000 0000 0000 0000 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0010 0101


Mantissa (52 bits) =
0111 0100 1001 1111 0100 1100 0010 0000 0000 0000 0000 0000 0000


The base ten decimal number 400 100 100 096 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0010 0101 - 0111 0100 1001 1111 0100 1100 0010 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number 400 100 100 095 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 400 100 100 097 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 400 100 100 096 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 573.21 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 71 675 451 908 785 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 423.19 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 345 259 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 56.000 000 000 000 000 000 000 01 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 3 541 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 53.232 860 57 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number 18 446 744 073 709 551 584 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
Number -9.954 034 474 611 633 63 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:21 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal