64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 3 949 040.725 641 6 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 3 949 040.725 641 6(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 3 949 040.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 3 949 040 ÷ 2 = 1 974 520 + 0;
  • 1 974 520 ÷ 2 = 987 260 + 0;
  • 987 260 ÷ 2 = 493 630 + 0;
  • 493 630 ÷ 2 = 246 815 + 0;
  • 246 815 ÷ 2 = 123 407 + 1;
  • 123 407 ÷ 2 = 61 703 + 1;
  • 61 703 ÷ 2 = 30 851 + 1;
  • 30 851 ÷ 2 = 15 425 + 1;
  • 15 425 ÷ 2 = 7 712 + 1;
  • 7 712 ÷ 2 = 3 856 + 0;
  • 3 856 ÷ 2 = 1 928 + 0;
  • 1 928 ÷ 2 = 964 + 0;
  • 964 ÷ 2 = 482 + 0;
  • 482 ÷ 2 = 241 + 0;
  • 241 ÷ 2 = 120 + 1;
  • 120 ÷ 2 = 60 + 0;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


3 949 040(10) =


11 1100 0100 0001 1111 0000(2)


3. Convert to binary (base 2) the fractional part: 0.725 641 6.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.725 641 6 × 2 = 1 + 0.451 283 2;
  • 2) 0.451 283 2 × 2 = 0 + 0.902 566 4;
  • 3) 0.902 566 4 × 2 = 1 + 0.805 132 8;
  • 4) 0.805 132 8 × 2 = 1 + 0.610 265 6;
  • 5) 0.610 265 6 × 2 = 1 + 0.220 531 2;
  • 6) 0.220 531 2 × 2 = 0 + 0.441 062 4;
  • 7) 0.441 062 4 × 2 = 0 + 0.882 124 8;
  • 8) 0.882 124 8 × 2 = 1 + 0.764 249 6;
  • 9) 0.764 249 6 × 2 = 1 + 0.528 499 2;
  • 10) 0.528 499 2 × 2 = 1 + 0.056 998 4;
  • 11) 0.056 998 4 × 2 = 0 + 0.113 996 8;
  • 12) 0.113 996 8 × 2 = 0 + 0.227 993 6;
  • 13) 0.227 993 6 × 2 = 0 + 0.455 987 2;
  • 14) 0.455 987 2 × 2 = 0 + 0.911 974 4;
  • 15) 0.911 974 4 × 2 = 1 + 0.823 948 8;
  • 16) 0.823 948 8 × 2 = 1 + 0.647 897 6;
  • 17) 0.647 897 6 × 2 = 1 + 0.295 795 2;
  • 18) 0.295 795 2 × 2 = 0 + 0.591 590 4;
  • 19) 0.591 590 4 × 2 = 1 + 0.183 180 8;
  • 20) 0.183 180 8 × 2 = 0 + 0.366 361 6;
  • 21) 0.366 361 6 × 2 = 0 + 0.732 723 2;
  • 22) 0.732 723 2 × 2 = 1 + 0.465 446 4;
  • 23) 0.465 446 4 × 2 = 0 + 0.930 892 8;
  • 24) 0.930 892 8 × 2 = 1 + 0.861 785 6;
  • 25) 0.861 785 6 × 2 = 1 + 0.723 571 2;
  • 26) 0.723 571 2 × 2 = 1 + 0.447 142 4;
  • 27) 0.447 142 4 × 2 = 0 + 0.894 284 8;
  • 28) 0.894 284 8 × 2 = 1 + 0.788 569 6;
  • 29) 0.788 569 6 × 2 = 1 + 0.577 139 2;
  • 30) 0.577 139 2 × 2 = 1 + 0.154 278 4;
  • 31) 0.154 278 4 × 2 = 0 + 0.308 556 8;
  • 32) 0.308 556 8 × 2 = 0 + 0.617 113 6;
  • 33) 0.617 113 6 × 2 = 1 + 0.234 227 2;
  • 34) 0.234 227 2 × 2 = 0 + 0.468 454 4;
  • 35) 0.468 454 4 × 2 = 0 + 0.936 908 8;
  • 36) 0.936 908 8 × 2 = 1 + 0.873 817 6;
  • 37) 0.873 817 6 × 2 = 1 + 0.747 635 2;
  • 38) 0.747 635 2 × 2 = 1 + 0.495 270 4;
  • 39) 0.495 270 4 × 2 = 0 + 0.990 540 8;
  • 40) 0.990 540 8 × 2 = 1 + 0.981 081 6;
  • 41) 0.981 081 6 × 2 = 1 + 0.962 163 2;
  • 42) 0.962 163 2 × 2 = 1 + 0.924 326 4;
  • 43) 0.924 326 4 × 2 = 1 + 0.848 652 8;
  • 44) 0.848 652 8 × 2 = 1 + 0.697 305 6;
  • 45) 0.697 305 6 × 2 = 1 + 0.394 611 2;
  • 46) 0.394 611 2 × 2 = 0 + 0.789 222 4;
  • 47) 0.789 222 4 × 2 = 1 + 0.578 444 8;
  • 48) 0.578 444 8 × 2 = 1 + 0.156 889 6;
  • 49) 0.156 889 6 × 2 = 0 + 0.313 779 2;
  • 50) 0.313 779 2 × 2 = 0 + 0.627 558 4;
  • 51) 0.627 558 4 × 2 = 1 + 0.255 116 8;
  • 52) 0.255 116 8 × 2 = 0 + 0.510 233 6;
  • 53) 0.510 233 6 × 2 = 1 + 0.020 467 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.725 641 6(10) =


0.1011 1001 1100 0011 1010 0101 1101 1100 1001 1101 1111 1011 0010 1(2)


5. Positive number before normalization:

3 949 040.725 641 6(10) =


11 1100 0100 0001 1111 0000.1011 1001 1100 0011 1010 0101 1101 1100 1001 1101 1111 1011 0010 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 21 positions to the left, so that only one non zero digit remains to the left of it:


3 949 040.725 641 6(10) =


11 1100 0100 0001 1111 0000.1011 1001 1100 0011 1010 0101 1101 1100 1001 1101 1111 1011 0010 1(2) =


11 1100 0100 0001 1111 0000.1011 1001 1100 0011 1010 0101 1101 1100 1001 1101 1111 1011 0010 1(2) × 20 =


1.1110 0010 0000 1111 1000 0101 1100 1110 0001 1101 0010 1110 1110 0100 1110 1111 1101 1001 01(2) × 221


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 21


Mantissa (not normalized):
1.1110 0010 0000 1111 1000 0101 1100 1110 0001 1101 0010 1110 1110 0100 1110 1111 1101 1001 01


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


21 + 2(11-1) - 1 =


(21 + 1 023)(10) =


1 044(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 044 ÷ 2 = 522 + 0;
  • 522 ÷ 2 = 261 + 0;
  • 261 ÷ 2 = 130 + 1;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1044(10) =


100 0001 0100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1110 0010 0000 1111 1000 0101 1100 1110 0001 1101 0010 1110 1110 01 0011 1011 1111 0110 0101 =


1110 0010 0000 1111 1000 0101 1100 1110 0001 1101 0010 1110 1110


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0001 0100


Mantissa (52 bits) =
1110 0010 0000 1111 1000 0101 1100 1110 0001 1101 0010 1110 1110


The base ten decimal number 3 949 040.725 641 6 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0001 0100 - 1110 0010 0000 1111 1000 0101 1100 1110 0001 1101 0010 1110 1110

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1 282 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 18:00 UTC (GMT)
Number 1 282 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 18:00 UTC (GMT)
Number 50.569 600 888 243 378 733 477 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 18:00 UTC (GMT)
Number 129.96 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 18:00 UTC (GMT)
Number 1 000 000 100 000 100 111 011 011 000 960 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 18:00 UTC (GMT)
Number 1 000 001 000 099 999 999 999 999 999 872 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 18:00 UTC (GMT)
Number 531 449 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 17:59 UTC (GMT)
Number 4 040 000 018 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 17:59 UTC (GMT)
Number 15 244 445 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 17:59 UTC (GMT)
Number 38.26 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 17:59 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100