Convert the Number 3 677 080.252 848 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 3 677 080.252 848(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 3 677 080.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 3 677 080 ÷ 2 = 1 838 540 + 0;
  • 1 838 540 ÷ 2 = 919 270 + 0;
  • 919 270 ÷ 2 = 459 635 + 0;
  • 459 635 ÷ 2 = 229 817 + 1;
  • 229 817 ÷ 2 = 114 908 + 1;
  • 114 908 ÷ 2 = 57 454 + 0;
  • 57 454 ÷ 2 = 28 727 + 0;
  • 28 727 ÷ 2 = 14 363 + 1;
  • 14 363 ÷ 2 = 7 181 + 1;
  • 7 181 ÷ 2 = 3 590 + 1;
  • 3 590 ÷ 2 = 1 795 + 0;
  • 1 795 ÷ 2 = 897 + 1;
  • 897 ÷ 2 = 448 + 1;
  • 448 ÷ 2 = 224 + 0;
  • 224 ÷ 2 = 112 + 0;
  • 112 ÷ 2 = 56 + 0;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


3 677 080(10) =


11 1000 0001 1011 1001 1000(2)


3. Convert to binary (base 2) the fractional part: 0.252 848.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.252 848 × 2 = 0 + 0.505 696;
  • 2) 0.505 696 × 2 = 1 + 0.011 392;
  • 3) 0.011 392 × 2 = 0 + 0.022 784;
  • 4) 0.022 784 × 2 = 0 + 0.045 568;
  • 5) 0.045 568 × 2 = 0 + 0.091 136;
  • 6) 0.091 136 × 2 = 0 + 0.182 272;
  • 7) 0.182 272 × 2 = 0 + 0.364 544;
  • 8) 0.364 544 × 2 = 0 + 0.729 088;
  • 9) 0.729 088 × 2 = 1 + 0.458 176;
  • 10) 0.458 176 × 2 = 0 + 0.916 352;
  • 11) 0.916 352 × 2 = 1 + 0.832 704;
  • 12) 0.832 704 × 2 = 1 + 0.665 408;
  • 13) 0.665 408 × 2 = 1 + 0.330 816;
  • 14) 0.330 816 × 2 = 0 + 0.661 632;
  • 15) 0.661 632 × 2 = 1 + 0.323 264;
  • 16) 0.323 264 × 2 = 0 + 0.646 528;
  • 17) 0.646 528 × 2 = 1 + 0.293 056;
  • 18) 0.293 056 × 2 = 0 + 0.586 112;
  • 19) 0.586 112 × 2 = 1 + 0.172 224;
  • 20) 0.172 224 × 2 = 0 + 0.344 448;
  • 21) 0.344 448 × 2 = 0 + 0.688 896;
  • 22) 0.688 896 × 2 = 1 + 0.377 792;
  • 23) 0.377 792 × 2 = 0 + 0.755 584;
  • 24) 0.755 584 × 2 = 1 + 0.511 168;
  • 25) 0.511 168 × 2 = 1 + 0.022 336;
  • 26) 0.022 336 × 2 = 0 + 0.044 672;
  • 27) 0.044 672 × 2 = 0 + 0.089 344;
  • 28) 0.089 344 × 2 = 0 + 0.178 688;
  • 29) 0.178 688 × 2 = 0 + 0.357 376;
  • 30) 0.357 376 × 2 = 0 + 0.714 752;
  • 31) 0.714 752 × 2 = 1 + 0.429 504;
  • 32) 0.429 504 × 2 = 0 + 0.859 008;
  • 33) 0.859 008 × 2 = 1 + 0.718 016;
  • 34) 0.718 016 × 2 = 1 + 0.436 032;
  • 35) 0.436 032 × 2 = 0 + 0.872 064;
  • 36) 0.872 064 × 2 = 1 + 0.744 128;
  • 37) 0.744 128 × 2 = 1 + 0.488 256;
  • 38) 0.488 256 × 2 = 0 + 0.976 512;
  • 39) 0.976 512 × 2 = 1 + 0.953 024;
  • 40) 0.953 024 × 2 = 1 + 0.906 048;
  • 41) 0.906 048 × 2 = 1 + 0.812 096;
  • 42) 0.812 096 × 2 = 1 + 0.624 192;
  • 43) 0.624 192 × 2 = 1 + 0.248 384;
  • 44) 0.248 384 × 2 = 0 + 0.496 768;
  • 45) 0.496 768 × 2 = 0 + 0.993 536;
  • 46) 0.993 536 × 2 = 1 + 0.987 072;
  • 47) 0.987 072 × 2 = 1 + 0.974 144;
  • 48) 0.974 144 × 2 = 1 + 0.948 288;
  • 49) 0.948 288 × 2 = 1 + 0.896 576;
  • 50) 0.896 576 × 2 = 1 + 0.793 152;
  • 51) 0.793 152 × 2 = 1 + 0.586 304;
  • 52) 0.586 304 × 2 = 1 + 0.172 608;
  • 53) 0.172 608 × 2 = 0 + 0.345 216;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.252 848(10) =


0.0100 0000 1011 1010 1010 0101 1000 0010 1101 1011 1110 0111 1111 0(2)


5. Positive number before normalization:

3 677 080.252 848(10) =


11 1000 0001 1011 1001 1000.0100 0000 1011 1010 1010 0101 1000 0010 1101 1011 1110 0111 1111 0(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 21 positions to the left, so that only one non zero digit remains to the left of it:


3 677 080.252 848(10) =


11 1000 0001 1011 1001 1000.0100 0000 1011 1010 1010 0101 1000 0010 1101 1011 1110 0111 1111 0(2) =


11 1000 0001 1011 1001 1000.0100 0000 1011 1010 1010 0101 1000 0010 1101 1011 1110 0111 1111 0(2) × 20 =


1.1100 0000 1101 1100 1100 0010 0000 0101 1101 0101 0010 1100 0001 0110 1101 1111 0011 1111 10(2) × 221


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 21


Mantissa (not normalized):
1.1100 0000 1101 1100 1100 0010 0000 0101 1101 0101 0010 1100 0001 0110 1101 1111 0011 1111 10


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


21 + 2(11-1) - 1 =


(21 + 1 023)(10) =


1 044(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 044 ÷ 2 = 522 + 0;
  • 522 ÷ 2 = 261 + 0;
  • 261 ÷ 2 = 130 + 1;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1044(10) =


100 0001 0100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1100 0000 1101 1100 1100 0010 0000 0101 1101 0101 0010 1100 0001 01 1011 0111 1100 1111 1110 =


1100 0000 1101 1100 1100 0010 0000 0101 1101 0101 0010 1100 0001


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0001 0100


Mantissa (52 bits) =
1100 0000 1101 1100 1100 0010 0000 0101 1101 0101 0010 1100 0001


The base ten decimal number 3 677 080.252 848 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0001 0100 - 1100 0000 1101 1100 1100 0010 0000 0101 1101 0101 0010 1100 0001

(64 bits IEEE 754)

Number 3 677 080.252 847 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 3 677 080.252 849 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 3 677 080.252 848 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:44 UTC (GMT)
Number 1.159 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:44 UTC (GMT)
Number 10 000 000 000 000 000 024 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:44 UTC (GMT)
Number 456.28 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:44 UTC (GMT)
Number 20 001 038 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:43 UTC (GMT)
Number -1 605 282 547 372 814 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:43 UTC (GMT)
Number -32 000 007 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:43 UTC (GMT)
Number 22 143 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:43 UTC (GMT)
Number 34 334.3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:43 UTC (GMT)
Number 42.341 749 8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:43 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal