64bit IEEE 754: Decimal -> Double Precision Floating Point Binary: 333 004.404 077 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 333 004.404 077(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 333 004.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 333 004 ÷ 2 = 166 502 + 0;
  • 166 502 ÷ 2 = 83 251 + 0;
  • 83 251 ÷ 2 = 41 625 + 1;
  • 41 625 ÷ 2 = 20 812 + 1;
  • 20 812 ÷ 2 = 10 406 + 0;
  • 10 406 ÷ 2 = 5 203 + 0;
  • 5 203 ÷ 2 = 2 601 + 1;
  • 2 601 ÷ 2 = 1 300 + 1;
  • 1 300 ÷ 2 = 650 + 0;
  • 650 ÷ 2 = 325 + 0;
  • 325 ÷ 2 = 162 + 1;
  • 162 ÷ 2 = 81 + 0;
  • 81 ÷ 2 = 40 + 1;
  • 40 ÷ 2 = 20 + 0;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


333 004(10) =


101 0001 0100 1100 1100(2)


3. Convert to binary (base 2) the fractional part: 0.404 077.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.404 077 × 2 = 0 + 0.808 154;
  • 2) 0.808 154 × 2 = 1 + 0.616 308;
  • 3) 0.616 308 × 2 = 1 + 0.232 616;
  • 4) 0.232 616 × 2 = 0 + 0.465 232;
  • 5) 0.465 232 × 2 = 0 + 0.930 464;
  • 6) 0.930 464 × 2 = 1 + 0.860 928;
  • 7) 0.860 928 × 2 = 1 + 0.721 856;
  • 8) 0.721 856 × 2 = 1 + 0.443 712;
  • 9) 0.443 712 × 2 = 0 + 0.887 424;
  • 10) 0.887 424 × 2 = 1 + 0.774 848;
  • 11) 0.774 848 × 2 = 1 + 0.549 696;
  • 12) 0.549 696 × 2 = 1 + 0.099 392;
  • 13) 0.099 392 × 2 = 0 + 0.198 784;
  • 14) 0.198 784 × 2 = 0 + 0.397 568;
  • 15) 0.397 568 × 2 = 0 + 0.795 136;
  • 16) 0.795 136 × 2 = 1 + 0.590 272;
  • 17) 0.590 272 × 2 = 1 + 0.180 544;
  • 18) 0.180 544 × 2 = 0 + 0.361 088;
  • 19) 0.361 088 × 2 = 0 + 0.722 176;
  • 20) 0.722 176 × 2 = 1 + 0.444 352;
  • 21) 0.444 352 × 2 = 0 + 0.888 704;
  • 22) 0.888 704 × 2 = 1 + 0.777 408;
  • 23) 0.777 408 × 2 = 1 + 0.554 816;
  • 24) 0.554 816 × 2 = 1 + 0.109 632;
  • 25) 0.109 632 × 2 = 0 + 0.219 264;
  • 26) 0.219 264 × 2 = 0 + 0.438 528;
  • 27) 0.438 528 × 2 = 0 + 0.877 056;
  • 28) 0.877 056 × 2 = 1 + 0.754 112;
  • 29) 0.754 112 × 2 = 1 + 0.508 224;
  • 30) 0.508 224 × 2 = 1 + 0.016 448;
  • 31) 0.016 448 × 2 = 0 + 0.032 896;
  • 32) 0.032 896 × 2 = 0 + 0.065 792;
  • 33) 0.065 792 × 2 = 0 + 0.131 584;
  • 34) 0.131 584 × 2 = 0 + 0.263 168;
  • 35) 0.263 168 × 2 = 0 + 0.526 336;
  • 36) 0.526 336 × 2 = 1 + 0.052 672;
  • 37) 0.052 672 × 2 = 0 + 0.105 344;
  • 38) 0.105 344 × 2 = 0 + 0.210 688;
  • 39) 0.210 688 × 2 = 0 + 0.421 376;
  • 40) 0.421 376 × 2 = 0 + 0.842 752;
  • 41) 0.842 752 × 2 = 1 + 0.685 504;
  • 42) 0.685 504 × 2 = 1 + 0.371 008;
  • 43) 0.371 008 × 2 = 0 + 0.742 016;
  • 44) 0.742 016 × 2 = 1 + 0.484 032;
  • 45) 0.484 032 × 2 = 0 + 0.968 064;
  • 46) 0.968 064 × 2 = 1 + 0.936 128;
  • 47) 0.936 128 × 2 = 1 + 0.872 256;
  • 48) 0.872 256 × 2 = 1 + 0.744 512;
  • 49) 0.744 512 × 2 = 1 + 0.489 024;
  • 50) 0.489 024 × 2 = 0 + 0.978 048;
  • 51) 0.978 048 × 2 = 1 + 0.956 096;
  • 52) 0.956 096 × 2 = 1 + 0.912 192;
  • 53) 0.912 192 × 2 = 1 + 0.824 384;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.404 077(10) =


0.0110 0111 0111 0001 1001 0111 0001 1100 0001 0000 1101 0111 1011 1(2)


5. Positive number before normalization:

333 004.404 077(10) =


101 0001 0100 1100 1100.0110 0111 0111 0001 1001 0111 0001 1100 0001 0000 1101 0111 1011 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 18 positions to the left, so that only one non zero digit remains to the left of it:


333 004.404 077(10) =


101 0001 0100 1100 1100.0110 0111 0111 0001 1001 0111 0001 1100 0001 0000 1101 0111 1011 1(2) =


101 0001 0100 1100 1100.0110 0111 0111 0001 1001 0111 0001 1100 0001 0000 1101 0111 1011 1(2) × 20 =


1.0100 0101 0011 0011 0001 1001 1101 1100 0110 0101 1100 0111 0000 0100 0011 0101 1110 111(2) × 218


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 18


Mantissa (not normalized):
1.0100 0101 0011 0011 0001 1001 1101 1100 0110 0101 1100 0111 0000 0100 0011 0101 1110 111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


18 + 2(11-1) - 1 =


(18 + 1 023)(10) =


1 041(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 041 ÷ 2 = 520 + 1;
  • 520 ÷ 2 = 260 + 0;
  • 260 ÷ 2 = 130 + 0;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1041(10) =


100 0001 0001(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0101 0011 0011 0001 1001 1101 1100 0110 0101 1100 0111 0000 010 0001 1010 1111 0111 =


0100 0101 0011 0011 0001 1001 1101 1100 0110 0101 1100 0111 0000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0001 0001


Mantissa (52 bits) =
0100 0101 0011 0011 0001 1001 1101 1100 0110 0101 1100 0111 0000


The base ten decimal number 333 004.404 077 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0001 0001 - 0100 0101 0011 0011 0001 1001 1101 1100 0110 0101 1100 0111 0000

(64 bits IEEE 754)
  • Sign (1 bit):

    • 0

      63
  • Exponent (11 bits):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 0

      58
    • 0

      57
    • 1

      56
    • 0

      55
    • 0

      54
    • 0

      53
    • 1

      52
  • Mantissa (52 bits):

    • 0

      51
    • 1

      50
    • 0

      49
    • 0

      48
    • 0

      47
    • 1

      46
    • 0

      45
    • 1

      44
    • 0

      43
    • 0

      42
    • 1

      41
    • 1

      40
    • 0

      39
    • 0

      38
    • 1

      37
    • 1

      36
    • 0

      35
    • 0

      34
    • 0

      33
    • 1

      32
    • 1

      31
    • 0

      30
    • 0

      29
    • 1

      28
    • 1

      27
    • 1

      26
    • 0

      25
    • 1

      24
    • 1

      23
    • 1

      22
    • 0

      21
    • 0

      20
    • 0

      19
    • 1

      18
    • 1

      17
    • 0

      16
    • 0

      15
    • 1

      14
    • 0

      13
    • 1

      12
    • 1

      11
    • 1

      10
    • 0

      9
    • 0

      8
    • 0

      7
    • 1

      6
    • 1

      5
    • 1

      4
    • 0

      3
    • 0

      2
    • 0

      1
    • 0

      0

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 333 004.404 077 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 093 938 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number -80 337 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number 11 111 110 111 111 011 111 001 110 110 110 010 001 011 010 000 111 001 010 109 976 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number 6.316 668 999 999 999 201 13 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number 18 178 396 439 616 541 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number 16 871 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number -0.149 999 998 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number 30 223 999 968 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
Number 1 231 321 243 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 18:04 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100