Decimal to 64 Bit IEEE 754 Binary: Convert Number 3.141 592 653 589 793 115 997 963 470 6 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 3.141 592 653 589 793 115 997 963 470 6(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 3.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

3(10) =


11(2)


3. Convert to binary (base 2) the fractional part: 0.141 592 653 589 793 115 997 963 470 6.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.141 592 653 589 793 115 997 963 470 6 × 2 = 0 + 0.283 185 307 179 586 231 995 926 941 2;
  • 2) 0.283 185 307 179 586 231 995 926 941 2 × 2 = 0 + 0.566 370 614 359 172 463 991 853 882 4;
  • 3) 0.566 370 614 359 172 463 991 853 882 4 × 2 = 1 + 0.132 741 228 718 344 927 983 707 764 8;
  • 4) 0.132 741 228 718 344 927 983 707 764 8 × 2 = 0 + 0.265 482 457 436 689 855 967 415 529 6;
  • 5) 0.265 482 457 436 689 855 967 415 529 6 × 2 = 0 + 0.530 964 914 873 379 711 934 831 059 2;
  • 6) 0.530 964 914 873 379 711 934 831 059 2 × 2 = 1 + 0.061 929 829 746 759 423 869 662 118 4;
  • 7) 0.061 929 829 746 759 423 869 662 118 4 × 2 = 0 + 0.123 859 659 493 518 847 739 324 236 8;
  • 8) 0.123 859 659 493 518 847 739 324 236 8 × 2 = 0 + 0.247 719 318 987 037 695 478 648 473 6;
  • 9) 0.247 719 318 987 037 695 478 648 473 6 × 2 = 0 + 0.495 438 637 974 075 390 957 296 947 2;
  • 10) 0.495 438 637 974 075 390 957 296 947 2 × 2 = 0 + 0.990 877 275 948 150 781 914 593 894 4;
  • 11) 0.990 877 275 948 150 781 914 593 894 4 × 2 = 1 + 0.981 754 551 896 301 563 829 187 788 8;
  • 12) 0.981 754 551 896 301 563 829 187 788 8 × 2 = 1 + 0.963 509 103 792 603 127 658 375 577 6;
  • 13) 0.963 509 103 792 603 127 658 375 577 6 × 2 = 1 + 0.927 018 207 585 206 255 316 751 155 2;
  • 14) 0.927 018 207 585 206 255 316 751 155 2 × 2 = 1 + 0.854 036 415 170 412 510 633 502 310 4;
  • 15) 0.854 036 415 170 412 510 633 502 310 4 × 2 = 1 + 0.708 072 830 340 825 021 267 004 620 8;
  • 16) 0.708 072 830 340 825 021 267 004 620 8 × 2 = 1 + 0.416 145 660 681 650 042 534 009 241 6;
  • 17) 0.416 145 660 681 650 042 534 009 241 6 × 2 = 0 + 0.832 291 321 363 300 085 068 018 483 2;
  • 18) 0.832 291 321 363 300 085 068 018 483 2 × 2 = 1 + 0.664 582 642 726 600 170 136 036 966 4;
  • 19) 0.664 582 642 726 600 170 136 036 966 4 × 2 = 1 + 0.329 165 285 453 200 340 272 073 932 8;
  • 20) 0.329 165 285 453 200 340 272 073 932 8 × 2 = 0 + 0.658 330 570 906 400 680 544 147 865 6;
  • 21) 0.658 330 570 906 400 680 544 147 865 6 × 2 = 1 + 0.316 661 141 812 801 361 088 295 731 2;
  • 22) 0.316 661 141 812 801 361 088 295 731 2 × 2 = 0 + 0.633 322 283 625 602 722 176 591 462 4;
  • 23) 0.633 322 283 625 602 722 176 591 462 4 × 2 = 1 + 0.266 644 567 251 205 444 353 182 924 8;
  • 24) 0.266 644 567 251 205 444 353 182 924 8 × 2 = 0 + 0.533 289 134 502 410 888 706 365 849 6;
  • 25) 0.533 289 134 502 410 888 706 365 849 6 × 2 = 1 + 0.066 578 269 004 821 777 412 731 699 2;
  • 26) 0.066 578 269 004 821 777 412 731 699 2 × 2 = 0 + 0.133 156 538 009 643 554 825 463 398 4;
  • 27) 0.133 156 538 009 643 554 825 463 398 4 × 2 = 0 + 0.266 313 076 019 287 109 650 926 796 8;
  • 28) 0.266 313 076 019 287 109 650 926 796 8 × 2 = 0 + 0.532 626 152 038 574 219 301 853 593 6;
  • 29) 0.532 626 152 038 574 219 301 853 593 6 × 2 = 1 + 0.065 252 304 077 148 438 603 707 187 2;
  • 30) 0.065 252 304 077 148 438 603 707 187 2 × 2 = 0 + 0.130 504 608 154 296 877 207 414 374 4;
  • 31) 0.130 504 608 154 296 877 207 414 374 4 × 2 = 0 + 0.261 009 216 308 593 754 414 828 748 8;
  • 32) 0.261 009 216 308 593 754 414 828 748 8 × 2 = 0 + 0.522 018 432 617 187 508 829 657 497 6;
  • 33) 0.522 018 432 617 187 508 829 657 497 6 × 2 = 1 + 0.044 036 865 234 375 017 659 314 995 2;
  • 34) 0.044 036 865 234 375 017 659 314 995 2 × 2 = 0 + 0.088 073 730 468 750 035 318 629 990 4;
  • 35) 0.088 073 730 468 750 035 318 629 990 4 × 2 = 0 + 0.176 147 460 937 500 070 637 259 980 8;
  • 36) 0.176 147 460 937 500 070 637 259 980 8 × 2 = 0 + 0.352 294 921 875 000 141 274 519 961 6;
  • 37) 0.352 294 921 875 000 141 274 519 961 6 × 2 = 0 + 0.704 589 843 750 000 282 549 039 923 2;
  • 38) 0.704 589 843 750 000 282 549 039 923 2 × 2 = 1 + 0.409 179 687 500 000 565 098 079 846 4;
  • 39) 0.409 179 687 500 000 565 098 079 846 4 × 2 = 0 + 0.818 359 375 000 001 130 196 159 692 8;
  • 40) 0.818 359 375 000 001 130 196 159 692 8 × 2 = 1 + 0.636 718 750 000 002 260 392 319 385 6;
  • 41) 0.636 718 750 000 002 260 392 319 385 6 × 2 = 1 + 0.273 437 500 000 004 520 784 638 771 2;
  • 42) 0.273 437 500 000 004 520 784 638 771 2 × 2 = 0 + 0.546 875 000 000 009 041 569 277 542 4;
  • 43) 0.546 875 000 000 009 041 569 277 542 4 × 2 = 1 + 0.093 750 000 000 018 083 138 555 084 8;
  • 44) 0.093 750 000 000 018 083 138 555 084 8 × 2 = 0 + 0.187 500 000 000 036 166 277 110 169 6;
  • 45) 0.187 500 000 000 036 166 277 110 169 6 × 2 = 0 + 0.375 000 000 000 072 332 554 220 339 2;
  • 46) 0.375 000 000 000 072 332 554 220 339 2 × 2 = 0 + 0.750 000 000 000 144 665 108 440 678 4;
  • 47) 0.750 000 000 000 144 665 108 440 678 4 × 2 = 1 + 0.500 000 000 000 289 330 216 881 356 8;
  • 48) 0.500 000 000 000 289 330 216 881 356 8 × 2 = 1 + 0.000 000 000 000 578 660 433 762 713 6;
  • 49) 0.000 000 000 000 578 660 433 762 713 6 × 2 = 0 + 0.000 000 000 001 157 320 867 525 427 2;
  • 50) 0.000 000 000 001 157 320 867 525 427 2 × 2 = 0 + 0.000 000 000 002 314 641 735 050 854 4;
  • 51) 0.000 000 000 002 314 641 735 050 854 4 × 2 = 0 + 0.000 000 000 004 629 283 470 101 708 8;
  • 52) 0.000 000 000 004 629 283 470 101 708 8 × 2 = 0 + 0.000 000 000 009 258 566 940 203 417 6;
  • 53) 0.000 000 000 009 258 566 940 203 417 6 × 2 = 0 + 0.000 000 000 018 517 133 880 406 835 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.141 592 653 589 793 115 997 963 470 6(10) =


0.0010 0100 0011 1111 0110 1010 1000 1000 1000 0101 1010 0011 0000 0(2)

5. Positive number before normalization:

3.141 592 653 589 793 115 997 963 470 6(10) =


11.0010 0100 0011 1111 0110 1010 1000 1000 1000 0101 1010 0011 0000 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the left, so that only one non zero digit remains to the left of it:


3.141 592 653 589 793 115 997 963 470 6(10) =


11.0010 0100 0011 1111 0110 1010 1000 1000 1000 0101 1010 0011 0000 0(2) =


11.0010 0100 0011 1111 0110 1010 1000 1000 1000 0101 1010 0011 0000 0(2) × 20 =


1.1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 00(2) × 21


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 1


Mantissa (not normalized):
1.1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 00


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


1 + 2(11-1) - 1 =


(1 + 1 023)(10) =


1 024(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 024 ÷ 2 = 512 + 0;
  • 512 ÷ 2 = 256 + 0;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1024(10) =


100 0000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 00 =


1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0000


Mantissa (52 bits) =
1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000


The base ten decimal number 3.141 592 653 589 793 115 997 963 470 6 converted and written in 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0000 0000 - 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100