Convert the Number 25.714 256 286 621 093 75 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 25.714 256 286 621 093 75(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 25.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


25(10) =


1 1001(2)


3. Convert to binary (base 2) the fractional part: 0.714 256 286 621 093 75.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.714 256 286 621 093 75 × 2 = 1 + 0.428 512 573 242 187 5;
  • 2) 0.428 512 573 242 187 5 × 2 = 0 + 0.857 025 146 484 375;
  • 3) 0.857 025 146 484 375 × 2 = 1 + 0.714 050 292 968 75;
  • 4) 0.714 050 292 968 75 × 2 = 1 + 0.428 100 585 937 5;
  • 5) 0.428 100 585 937 5 × 2 = 0 + 0.856 201 171 875;
  • 6) 0.856 201 171 875 × 2 = 1 + 0.712 402 343 75;
  • 7) 0.712 402 343 75 × 2 = 1 + 0.424 804 687 5;
  • 8) 0.424 804 687 5 × 2 = 0 + 0.849 609 375;
  • 9) 0.849 609 375 × 2 = 1 + 0.699 218 75;
  • 10) 0.699 218 75 × 2 = 1 + 0.398 437 5;
  • 11) 0.398 437 5 × 2 = 0 + 0.796 875;
  • 12) 0.796 875 × 2 = 1 + 0.593 75;
  • 13) 0.593 75 × 2 = 1 + 0.187 5;
  • 14) 0.187 5 × 2 = 0 + 0.375;
  • 15) 0.375 × 2 = 0 + 0.75;
  • 16) 0.75 × 2 = 1 + 0.5;
  • 17) 0.5 × 2 = 1 + 0;

4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.714 256 286 621 093 75(10) =


0.1011 0110 1101 1001 1(2)


5. Positive number before normalization:

25.714 256 286 621 093 75(10) =


1 1001.1011 0110 1101 1001 1(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 4 positions to the left, so that only one non zero digit remains to the left of it:


25.714 256 286 621 093 75(10) =


1 1001.1011 0110 1101 1001 1(2) =


1 1001.1011 0110 1101 1001 1(2) × 20 =


1.1001 1011 0110 1101 1001 1(2) × 24


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 4


Mantissa (not normalized):
1.1001 1011 0110 1101 1001 1


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


4 + 2(11-1) - 1 =


(4 + 1 023)(10) =


1 027(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 027 ÷ 2 = 513 + 1;
  • 513 ÷ 2 = 256 + 1;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1027(10) =


100 0000 0011(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 1 0011 0110 1101 1011 0011 000 0000 0000 0000 0000 0000 0000 0000 =


1001 1011 0110 1101 1001 1000 0000 0000 0000 0000 0000 0000 0000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 0011


Mantissa (52 bits) =
1001 1011 0110 1101 1001 1000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 25.714 256 286 621 093 75 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 0011 - 1001 1011 0110 1101 1001 1000 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number 25.714 256 286 621 093 74 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 25.714 256 286 621 093 76 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 25.714 256 286 621 093 75 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:16 UTC (GMT)
Number 1 140 000 000 051 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:16 UTC (GMT)
Number -2 741.6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:16 UTC (GMT)
Number 0.000 000 000 931 322 574 615 479 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:16 UTC (GMT)
Number 8 424 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 11 397 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 12.499 999 999 999 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number -30 871 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 2 342.234 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 0.707 106 781 186 547 524 42 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal