64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 1 714 360 367 202 139 909 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 1 714 360 367 202 139 909(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 714 360 367 202 139 909 ÷ 2 = 857 180 183 601 069 954 + 1;
  • 857 180 183 601 069 954 ÷ 2 = 428 590 091 800 534 977 + 0;
  • 428 590 091 800 534 977 ÷ 2 = 214 295 045 900 267 488 + 1;
  • 214 295 045 900 267 488 ÷ 2 = 107 147 522 950 133 744 + 0;
  • 107 147 522 950 133 744 ÷ 2 = 53 573 761 475 066 872 + 0;
  • 53 573 761 475 066 872 ÷ 2 = 26 786 880 737 533 436 + 0;
  • 26 786 880 737 533 436 ÷ 2 = 13 393 440 368 766 718 + 0;
  • 13 393 440 368 766 718 ÷ 2 = 6 696 720 184 383 359 + 0;
  • 6 696 720 184 383 359 ÷ 2 = 3 348 360 092 191 679 + 1;
  • 3 348 360 092 191 679 ÷ 2 = 1 674 180 046 095 839 + 1;
  • 1 674 180 046 095 839 ÷ 2 = 837 090 023 047 919 + 1;
  • 837 090 023 047 919 ÷ 2 = 418 545 011 523 959 + 1;
  • 418 545 011 523 959 ÷ 2 = 209 272 505 761 979 + 1;
  • 209 272 505 761 979 ÷ 2 = 104 636 252 880 989 + 1;
  • 104 636 252 880 989 ÷ 2 = 52 318 126 440 494 + 1;
  • 52 318 126 440 494 ÷ 2 = 26 159 063 220 247 + 0;
  • 26 159 063 220 247 ÷ 2 = 13 079 531 610 123 + 1;
  • 13 079 531 610 123 ÷ 2 = 6 539 765 805 061 + 1;
  • 6 539 765 805 061 ÷ 2 = 3 269 882 902 530 + 1;
  • 3 269 882 902 530 ÷ 2 = 1 634 941 451 265 + 0;
  • 1 634 941 451 265 ÷ 2 = 817 470 725 632 + 1;
  • 817 470 725 632 ÷ 2 = 408 735 362 816 + 0;
  • 408 735 362 816 ÷ 2 = 204 367 681 408 + 0;
  • 204 367 681 408 ÷ 2 = 102 183 840 704 + 0;
  • 102 183 840 704 ÷ 2 = 51 091 920 352 + 0;
  • 51 091 920 352 ÷ 2 = 25 545 960 176 + 0;
  • 25 545 960 176 ÷ 2 = 12 772 980 088 + 0;
  • 12 772 980 088 ÷ 2 = 6 386 490 044 + 0;
  • 6 386 490 044 ÷ 2 = 3 193 245 022 + 0;
  • 3 193 245 022 ÷ 2 = 1 596 622 511 + 0;
  • 1 596 622 511 ÷ 2 = 798 311 255 + 1;
  • 798 311 255 ÷ 2 = 399 155 627 + 1;
  • 399 155 627 ÷ 2 = 199 577 813 + 1;
  • 199 577 813 ÷ 2 = 99 788 906 + 1;
  • 99 788 906 ÷ 2 = 49 894 453 + 0;
  • 49 894 453 ÷ 2 = 24 947 226 + 1;
  • 24 947 226 ÷ 2 = 12 473 613 + 0;
  • 12 473 613 ÷ 2 = 6 236 806 + 1;
  • 6 236 806 ÷ 2 = 3 118 403 + 0;
  • 3 118 403 ÷ 2 = 1 559 201 + 1;
  • 1 559 201 ÷ 2 = 779 600 + 1;
  • 779 600 ÷ 2 = 389 800 + 0;
  • 389 800 ÷ 2 = 194 900 + 0;
  • 194 900 ÷ 2 = 97 450 + 0;
  • 97 450 ÷ 2 = 48 725 + 0;
  • 48 725 ÷ 2 = 24 362 + 1;
  • 24 362 ÷ 2 = 12 181 + 0;
  • 12 181 ÷ 2 = 6 090 + 1;
  • 6 090 ÷ 2 = 3 045 + 0;
  • 3 045 ÷ 2 = 1 522 + 1;
  • 1 522 ÷ 2 = 761 + 0;
  • 761 ÷ 2 = 380 + 1;
  • 380 ÷ 2 = 190 + 0;
  • 190 ÷ 2 = 95 + 0;
  • 95 ÷ 2 = 47 + 1;
  • 47 ÷ 2 = 23 + 1;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 714 360 367 202 139 909(10) =


1 0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111 0000 0101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 60 positions to the left, so that only one non zero digit remains to the left of it:


1 714 360 367 202 139 909(10) =


1 0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111 0000 0101(2) =


1 0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111 0000 0101(2) × 20 =


1.0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111 0000 0101(2) × 260


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 60


Mantissa (not normalized):
1.0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111 0000 0101


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


60 + 2(11-1) - 1 =


(60 + 1 023)(10) =


1 083(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 083 ÷ 2 = 541 + 1;
  • 541 ÷ 2 = 270 + 1;
  • 270 ÷ 2 = 135 + 0;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1083(10) =


100 0011 1011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111 0000 0101 =


0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1011


Mantissa (52 bits) =
0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111


The base ten decimal number 1 714 360 367 202 139 909 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 1011 - 0111 1100 1010 1010 0001 1010 1011 1100 0000 0001 0111 0111 1111

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -846.1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:47 UTC (GMT)
Number -8 456 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:47 UTC (GMT)
Number 37 165 583 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:47 UTC (GMT)
Number 5 751 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:47 UTC (GMT)
Number 355 684 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:47 UTC (GMT)
Number 6.71 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:46 UTC (GMT)
Number 0.151 365 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:46 UTC (GMT)
Number 18.269 999 999 999 94 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:46 UTC (GMT)
Number 2.718 74 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:46 UTC (GMT)
Number 3.333 333 3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 00:46 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100