64bit IEEE 754: Decimal -> Double Precision Floating Point Binary: 16 612 179 366 078 829 469 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 16 612 179 366 078 829 469(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 16 612 179 366 078 829 469 ÷ 2 = 8 306 089 683 039 414 734 + 1;
  • 8 306 089 683 039 414 734 ÷ 2 = 4 153 044 841 519 707 367 + 0;
  • 4 153 044 841 519 707 367 ÷ 2 = 2 076 522 420 759 853 683 + 1;
  • 2 076 522 420 759 853 683 ÷ 2 = 1 038 261 210 379 926 841 + 1;
  • 1 038 261 210 379 926 841 ÷ 2 = 519 130 605 189 963 420 + 1;
  • 519 130 605 189 963 420 ÷ 2 = 259 565 302 594 981 710 + 0;
  • 259 565 302 594 981 710 ÷ 2 = 129 782 651 297 490 855 + 0;
  • 129 782 651 297 490 855 ÷ 2 = 64 891 325 648 745 427 + 1;
  • 64 891 325 648 745 427 ÷ 2 = 32 445 662 824 372 713 + 1;
  • 32 445 662 824 372 713 ÷ 2 = 16 222 831 412 186 356 + 1;
  • 16 222 831 412 186 356 ÷ 2 = 8 111 415 706 093 178 + 0;
  • 8 111 415 706 093 178 ÷ 2 = 4 055 707 853 046 589 + 0;
  • 4 055 707 853 046 589 ÷ 2 = 2 027 853 926 523 294 + 1;
  • 2 027 853 926 523 294 ÷ 2 = 1 013 926 963 261 647 + 0;
  • 1 013 926 963 261 647 ÷ 2 = 506 963 481 630 823 + 1;
  • 506 963 481 630 823 ÷ 2 = 253 481 740 815 411 + 1;
  • 253 481 740 815 411 ÷ 2 = 126 740 870 407 705 + 1;
  • 126 740 870 407 705 ÷ 2 = 63 370 435 203 852 + 1;
  • 63 370 435 203 852 ÷ 2 = 31 685 217 601 926 + 0;
  • 31 685 217 601 926 ÷ 2 = 15 842 608 800 963 + 0;
  • 15 842 608 800 963 ÷ 2 = 7 921 304 400 481 + 1;
  • 7 921 304 400 481 ÷ 2 = 3 960 652 200 240 + 1;
  • 3 960 652 200 240 ÷ 2 = 1 980 326 100 120 + 0;
  • 1 980 326 100 120 ÷ 2 = 990 163 050 060 + 0;
  • 990 163 050 060 ÷ 2 = 495 081 525 030 + 0;
  • 495 081 525 030 ÷ 2 = 247 540 762 515 + 0;
  • 247 540 762 515 ÷ 2 = 123 770 381 257 + 1;
  • 123 770 381 257 ÷ 2 = 61 885 190 628 + 1;
  • 61 885 190 628 ÷ 2 = 30 942 595 314 + 0;
  • 30 942 595 314 ÷ 2 = 15 471 297 657 + 0;
  • 15 471 297 657 ÷ 2 = 7 735 648 828 + 1;
  • 7 735 648 828 ÷ 2 = 3 867 824 414 + 0;
  • 3 867 824 414 ÷ 2 = 1 933 912 207 + 0;
  • 1 933 912 207 ÷ 2 = 966 956 103 + 1;
  • 966 956 103 ÷ 2 = 483 478 051 + 1;
  • 483 478 051 ÷ 2 = 241 739 025 + 1;
  • 241 739 025 ÷ 2 = 120 869 512 + 1;
  • 120 869 512 ÷ 2 = 60 434 756 + 0;
  • 60 434 756 ÷ 2 = 30 217 378 + 0;
  • 30 217 378 ÷ 2 = 15 108 689 + 0;
  • 15 108 689 ÷ 2 = 7 554 344 + 1;
  • 7 554 344 ÷ 2 = 3 777 172 + 0;
  • 3 777 172 ÷ 2 = 1 888 586 + 0;
  • 1 888 586 ÷ 2 = 944 293 + 0;
  • 944 293 ÷ 2 = 472 146 + 1;
  • 472 146 ÷ 2 = 236 073 + 0;
  • 236 073 ÷ 2 = 118 036 + 1;
  • 118 036 ÷ 2 = 59 018 + 0;
  • 59 018 ÷ 2 = 29 509 + 0;
  • 29 509 ÷ 2 = 14 754 + 1;
  • 14 754 ÷ 2 = 7 377 + 0;
  • 7 377 ÷ 2 = 3 688 + 1;
  • 3 688 ÷ 2 = 1 844 + 0;
  • 1 844 ÷ 2 = 922 + 0;
  • 922 ÷ 2 = 461 + 0;
  • 461 ÷ 2 = 230 + 1;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


16 612 179 366 078 829 469(10) =


1110 0110 1000 1010 0101 0001 0001 1110 0100 1100 0011 0011 1101 0011 1001 1101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 63 positions to the left, so that only one non zero digit remains to the left of it:


16 612 179 366 078 829 469(10) =


1110 0110 1000 1010 0101 0001 0001 1110 0100 1100 0011 0011 1101 0011 1001 1101(2) =


1110 0110 1000 1010 0101 0001 0001 1110 0100 1100 0011 0011 1101 0011 1001 1101(2) × 20 =


1.1100 1101 0001 0100 1010 0010 0011 1100 1001 1000 0110 0111 1010 0111 0011 101(2) × 263


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 63


Mantissa (not normalized):
1.1100 1101 0001 0100 1010 0010 0011 1100 1001 1000 0110 0111 1010 0111 0011 101


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


63 + 2(11-1) - 1 =


(63 + 1 023)(10) =


1 086(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 086 ÷ 2 = 543 + 0;
  • 543 ÷ 2 = 271 + 1;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1086(10) =


100 0011 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1100 1101 0001 0100 1010 0010 0011 1100 1001 1000 0110 0111 1010 011 1001 1101 =


1100 1101 0001 0100 1010 0010 0011 1100 1001 1000 0110 0111 1010


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1110


Mantissa (52 bits) =
1100 1101 0001 0100 1010 0010 0011 1100 1001 1000 0110 0111 1010


The base ten decimal number 16 612 179 366 078 829 469 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 1110 - 1100 1101 0001 0100 1010 0010 0011 1100 1001 1000 0110 0111 1010

(64 bits IEEE 754)
  • Sign (1 bit):

    • 0

      63
  • Exponent (11 bits):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 0

      58
    • 1

      57
    • 1

      56
    • 1

      55
    • 1

      54
    • 1

      53
    • 0

      52
  • Mantissa (52 bits):

    • 1

      51
    • 1

      50
    • 0

      49
    • 0

      48
    • 1

      47
    • 1

      46
    • 0

      45
    • 1

      44
    • 0

      43
    • 0

      42
    • 0

      41
    • 1

      40
    • 0

      39
    • 1

      38
    • 0

      37
    • 0

      36
    • 1

      35
    • 0

      34
    • 1

      33
    • 0

      32
    • 0

      31
    • 0

      30
    • 1

      29
    • 0

      28
    • 0

      27
    • 0

      26
    • 1

      25
    • 1

      24
    • 1

      23
    • 1

      22
    • 0

      21
    • 0

      20
    • 1

      19
    • 0

      18
    • 0

      17
    • 1

      16
    • 1

      15
    • 0

      14
    • 0

      13
    • 0

      12
    • 0

      11
    • 1

      10
    • 1

      9
    • 0

      8
    • 0

      7
    • 1

      6
    • 1

      5
    • 1

      4
    • 1

      3
    • 0

      2
    • 1

      1
    • 0

      0

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 16 612 179 366 078 829 469 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 1 301 164 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 9.869 604 401 089 358 618 83 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 014 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 8 590 983 328.019 533 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 49.94 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number -7 221.292 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 624 477 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 110 010 110 100 000 000 100 010 000 001 100 000 101 110 000 001 010 101 100 001 101 110 101 096 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
Number 19 051 983 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:20 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100