Convert the Number 14 998 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 14 998(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 14 998 ÷ 2 = 7 499 + 0;
  • 7 499 ÷ 2 = 3 749 + 1;
  • 3 749 ÷ 2 = 1 874 + 1;
  • 1 874 ÷ 2 = 937 + 0;
  • 937 ÷ 2 = 468 + 1;
  • 468 ÷ 2 = 234 + 0;
  • 234 ÷ 2 = 117 + 0;
  • 117 ÷ 2 = 58 + 1;
  • 58 ÷ 2 = 29 + 0;
  • 29 ÷ 2 = 14 + 1;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


14 998(10) =


11 1010 1001 0110(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 13 positions to the left, so that only one non zero digit remains to the left of it:


14 998(10) =


11 1010 1001 0110(2) =


11 1010 1001 0110(2) × 20 =


1.1101 0100 1011 0(2) × 213


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 13


Mantissa (not normalized):
1.1101 0100 1011 0


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


13 + 2(11-1) - 1 =


(13 + 1 023)(10) =


1 036(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 036 ÷ 2 = 518 + 0;
  • 518 ÷ 2 = 259 + 0;
  • 259 ÷ 2 = 129 + 1;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1036(10) =


100 0000 1100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 1 1010 1001 0110 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


1101 0100 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 1100


Mantissa (52 bits) =
1101 0100 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 14 998 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 1100 - 1101 0100 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number 14 997 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 14 999 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 14 998 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 1 276 829 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 3 054 361 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number -15 008 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 105 123 243 023 987 654 876 986 103 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 96 347 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number -999 999 930 390 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 18 285 678 562 871 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 100 999 999 999 999 999 999 999 999 999 999 999 999 999 999 989 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 9 499 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal