Convert the Number 123 571 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 123 571(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 123 571 ÷ 2 = 61 785 + 1;
  • 61 785 ÷ 2 = 30 892 + 1;
  • 30 892 ÷ 2 = 15 446 + 0;
  • 15 446 ÷ 2 = 7 723 + 0;
  • 7 723 ÷ 2 = 3 861 + 1;
  • 3 861 ÷ 2 = 1 930 + 1;
  • 1 930 ÷ 2 = 965 + 0;
  • 965 ÷ 2 = 482 + 1;
  • 482 ÷ 2 = 241 + 0;
  • 241 ÷ 2 = 120 + 1;
  • 120 ÷ 2 = 60 + 0;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


123 571(10) =


1 1110 0010 1011 0011(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 16 positions to the left, so that only one non zero digit remains to the left of it:


123 571(10) =


1 1110 0010 1011 0011(2) =


1 1110 0010 1011 0011(2) × 20 =


1.1110 0010 1011 0011(2) × 216


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 16


Mantissa (not normalized):
1.1110 0010 1011 0011


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


16 + 2(11-1) - 1 =


(16 + 1 023)(10) =


1 039(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 039 ÷ 2 = 519 + 1;
  • 519 ÷ 2 = 259 + 1;
  • 259 ÷ 2 = 129 + 1;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1039(10) =


100 0000 1111(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 1110 0010 1011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


1110 0010 1011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0000 1111


Mantissa (52 bits) =
1110 0010 1011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 123 571 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0000 1111 - 1110 0010 1011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number 123 570 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 123 572 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 123 571 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 13.25 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 78 787.15 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 13 819 295 456 586 366 991 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 8 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 991 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number -0.001 011 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 134.21 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 919 992 345 678 900 333 333 333 987 654 321.098 765 432 112 345 678 900 010 000 000 03 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 1.666 666 666 663 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:13 UTC (GMT)
Number 0.632 78 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:12 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal