Decimal to 64 Bit IEEE 754 Binary: Convert Number 1 234 585 789.984 128 76 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 1 234 585 789.984 128 76(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 1 234 585 789.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 234 585 789 ÷ 2 = 617 292 894 + 1;
  • 617 292 894 ÷ 2 = 308 646 447 + 0;
  • 308 646 447 ÷ 2 = 154 323 223 + 1;
  • 154 323 223 ÷ 2 = 77 161 611 + 1;
  • 77 161 611 ÷ 2 = 38 580 805 + 1;
  • 38 580 805 ÷ 2 = 19 290 402 + 1;
  • 19 290 402 ÷ 2 = 9 645 201 + 0;
  • 9 645 201 ÷ 2 = 4 822 600 + 1;
  • 4 822 600 ÷ 2 = 2 411 300 + 0;
  • 2 411 300 ÷ 2 = 1 205 650 + 0;
  • 1 205 650 ÷ 2 = 602 825 + 0;
  • 602 825 ÷ 2 = 301 412 + 1;
  • 301 412 ÷ 2 = 150 706 + 0;
  • 150 706 ÷ 2 = 75 353 + 0;
  • 75 353 ÷ 2 = 37 676 + 1;
  • 37 676 ÷ 2 = 18 838 + 0;
  • 18 838 ÷ 2 = 9 419 + 0;
  • 9 419 ÷ 2 = 4 709 + 1;
  • 4 709 ÷ 2 = 2 354 + 1;
  • 2 354 ÷ 2 = 1 177 + 0;
  • 1 177 ÷ 2 = 588 + 1;
  • 588 ÷ 2 = 294 + 0;
  • 294 ÷ 2 = 147 + 0;
  • 147 ÷ 2 = 73 + 1;
  • 73 ÷ 2 = 36 + 1;
  • 36 ÷ 2 = 18 + 0;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

1 234 585 789(10) =


100 1001 1001 0110 0100 1000 1011 1101(2)


3. Convert to binary (base 2) the fractional part: 0.984 128 76.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.984 128 76 × 2 = 1 + 0.968 257 52;
  • 2) 0.968 257 52 × 2 = 1 + 0.936 515 04;
  • 3) 0.936 515 04 × 2 = 1 + 0.873 030 08;
  • 4) 0.873 030 08 × 2 = 1 + 0.746 060 16;
  • 5) 0.746 060 16 × 2 = 1 + 0.492 120 32;
  • 6) 0.492 120 32 × 2 = 0 + 0.984 240 64;
  • 7) 0.984 240 64 × 2 = 1 + 0.968 481 28;
  • 8) 0.968 481 28 × 2 = 1 + 0.936 962 56;
  • 9) 0.936 962 56 × 2 = 1 + 0.873 925 12;
  • 10) 0.873 925 12 × 2 = 1 + 0.747 850 24;
  • 11) 0.747 850 24 × 2 = 1 + 0.495 700 48;
  • 12) 0.495 700 48 × 2 = 0 + 0.991 400 96;
  • 13) 0.991 400 96 × 2 = 1 + 0.982 801 92;
  • 14) 0.982 801 92 × 2 = 1 + 0.965 603 84;
  • 15) 0.965 603 84 × 2 = 1 + 0.931 207 68;
  • 16) 0.931 207 68 × 2 = 1 + 0.862 415 36;
  • 17) 0.862 415 36 × 2 = 1 + 0.724 830 72;
  • 18) 0.724 830 72 × 2 = 1 + 0.449 661 44;
  • 19) 0.449 661 44 × 2 = 0 + 0.899 322 88;
  • 20) 0.899 322 88 × 2 = 1 + 0.798 645 76;
  • 21) 0.798 645 76 × 2 = 1 + 0.597 291 52;
  • 22) 0.597 291 52 × 2 = 1 + 0.194 583 04;
  • 23) 0.194 583 04 × 2 = 0 + 0.389 166 08;
  • 24) 0.389 166 08 × 2 = 0 + 0.778 332 16;
  • 25) 0.778 332 16 × 2 = 1 + 0.556 664 32;
  • 26) 0.556 664 32 × 2 = 1 + 0.113 328 64;
  • 27) 0.113 328 64 × 2 = 0 + 0.226 657 28;
  • 28) 0.226 657 28 × 2 = 0 + 0.453 314 56;
  • 29) 0.453 314 56 × 2 = 0 + 0.906 629 12;
  • 30) 0.906 629 12 × 2 = 1 + 0.813 258 24;
  • 31) 0.813 258 24 × 2 = 1 + 0.626 516 48;
  • 32) 0.626 516 48 × 2 = 1 + 0.253 032 96;
  • 33) 0.253 032 96 × 2 = 0 + 0.506 065 92;
  • 34) 0.506 065 92 × 2 = 1 + 0.012 131 84;
  • 35) 0.012 131 84 × 2 = 0 + 0.024 263 68;
  • 36) 0.024 263 68 × 2 = 0 + 0.048 527 36;
  • 37) 0.048 527 36 × 2 = 0 + 0.097 054 72;
  • 38) 0.097 054 72 × 2 = 0 + 0.194 109 44;
  • 39) 0.194 109 44 × 2 = 0 + 0.388 218 88;
  • 40) 0.388 218 88 × 2 = 0 + 0.776 437 76;
  • 41) 0.776 437 76 × 2 = 1 + 0.552 875 52;
  • 42) 0.552 875 52 × 2 = 1 + 0.105 751 04;
  • 43) 0.105 751 04 × 2 = 0 + 0.211 502 08;
  • 44) 0.211 502 08 × 2 = 0 + 0.423 004 16;
  • 45) 0.423 004 16 × 2 = 0 + 0.846 008 32;
  • 46) 0.846 008 32 × 2 = 1 + 0.692 016 64;
  • 47) 0.692 016 64 × 2 = 1 + 0.384 033 28;
  • 48) 0.384 033 28 × 2 = 0 + 0.768 066 56;
  • 49) 0.768 066 56 × 2 = 1 + 0.536 133 12;
  • 50) 0.536 133 12 × 2 = 1 + 0.072 266 24;
  • 51) 0.072 266 24 × 2 = 0 + 0.144 532 48;
  • 52) 0.144 532 48 × 2 = 0 + 0.289 064 96;
  • 53) 0.289 064 96 × 2 = 0 + 0.578 129 92;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.984 128 76(10) =


0.1111 1011 1110 1111 1101 1100 1100 0111 0100 0000 1100 0110 1100 0(2)

5. Positive number before normalization:

1 234 585 789.984 128 76(10) =


100 1001 1001 0110 0100 1000 1011 1101.1111 1011 1110 1111 1101 1100 1100 0111 0100 0000 1100 0110 1100 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 30 positions to the left, so that only one non zero digit remains to the left of it:


1 234 585 789.984 128 76(10) =


100 1001 1001 0110 0100 1000 1011 1101.1111 1011 1110 1111 1101 1100 1100 0111 0100 0000 1100 0110 1100 0(2) =


100 1001 1001 0110 0100 1000 1011 1101.1111 1011 1110 1111 1101 1100 1100 0111 0100 0000 1100 0110 1100 0(2) × 20 =


1.0010 0110 0101 1001 0010 0010 1111 0111 1110 1111 1011 1111 0111 0011 0001 1101 0000 0011 0001 1011 000(2) × 230


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 30


Mantissa (not normalized):
1.0010 0110 0101 1001 0010 0010 1111 0111 1110 1111 1011 1111 0111 0011 0001 1101 0000 0011 0001 1011 000


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


30 + 2(11-1) - 1 =


(30 + 1 023)(10) =


1 053(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 053 ÷ 2 = 526 + 1;
  • 526 ÷ 2 = 263 + 0;
  • 263 ÷ 2 = 131 + 1;
  • 131 ÷ 2 = 65 + 1;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1053(10) =


100 0001 1101(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0010 0110 0101 1001 0010 0010 1111 0111 1110 1111 1011 1111 0111 001 1000 1110 1000 0001 1000 1101 1000 =


0010 0110 0101 1001 0010 0010 1111 0111 1110 1111 1011 1111 0111


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0001 1101


Mantissa (52 bits) =
0010 0110 0101 1001 0010 0010 1111 0111 1110 1111 1011 1111 0111


The base ten decimal number 1 234 585 789.984 128 76 converted and written in 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 0001 1101 - 0010 0110 0101 1001 0010 0010 1111 0111 1110 1111 1011 1111 0111

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100