Convert the Number 11 665 660 768 132 694 792 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 11 665 660 768 132 694 792(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 665 660 768 132 694 792 ÷ 2 = 5 832 830 384 066 347 396 + 0;
  • 5 832 830 384 066 347 396 ÷ 2 = 2 916 415 192 033 173 698 + 0;
  • 2 916 415 192 033 173 698 ÷ 2 = 1 458 207 596 016 586 849 + 0;
  • 1 458 207 596 016 586 849 ÷ 2 = 729 103 798 008 293 424 + 1;
  • 729 103 798 008 293 424 ÷ 2 = 364 551 899 004 146 712 + 0;
  • 364 551 899 004 146 712 ÷ 2 = 182 275 949 502 073 356 + 0;
  • 182 275 949 502 073 356 ÷ 2 = 91 137 974 751 036 678 + 0;
  • 91 137 974 751 036 678 ÷ 2 = 45 568 987 375 518 339 + 0;
  • 45 568 987 375 518 339 ÷ 2 = 22 784 493 687 759 169 + 1;
  • 22 784 493 687 759 169 ÷ 2 = 11 392 246 843 879 584 + 1;
  • 11 392 246 843 879 584 ÷ 2 = 5 696 123 421 939 792 + 0;
  • 5 696 123 421 939 792 ÷ 2 = 2 848 061 710 969 896 + 0;
  • 2 848 061 710 969 896 ÷ 2 = 1 424 030 855 484 948 + 0;
  • 1 424 030 855 484 948 ÷ 2 = 712 015 427 742 474 + 0;
  • 712 015 427 742 474 ÷ 2 = 356 007 713 871 237 + 0;
  • 356 007 713 871 237 ÷ 2 = 178 003 856 935 618 + 1;
  • 178 003 856 935 618 ÷ 2 = 89 001 928 467 809 + 0;
  • 89 001 928 467 809 ÷ 2 = 44 500 964 233 904 + 1;
  • 44 500 964 233 904 ÷ 2 = 22 250 482 116 952 + 0;
  • 22 250 482 116 952 ÷ 2 = 11 125 241 058 476 + 0;
  • 11 125 241 058 476 ÷ 2 = 5 562 620 529 238 + 0;
  • 5 562 620 529 238 ÷ 2 = 2 781 310 264 619 + 0;
  • 2 781 310 264 619 ÷ 2 = 1 390 655 132 309 + 1;
  • 1 390 655 132 309 ÷ 2 = 695 327 566 154 + 1;
  • 695 327 566 154 ÷ 2 = 347 663 783 077 + 0;
  • 347 663 783 077 ÷ 2 = 173 831 891 538 + 1;
  • 173 831 891 538 ÷ 2 = 86 915 945 769 + 0;
  • 86 915 945 769 ÷ 2 = 43 457 972 884 + 1;
  • 43 457 972 884 ÷ 2 = 21 728 986 442 + 0;
  • 21 728 986 442 ÷ 2 = 10 864 493 221 + 0;
  • 10 864 493 221 ÷ 2 = 5 432 246 610 + 1;
  • 5 432 246 610 ÷ 2 = 2 716 123 305 + 0;
  • 2 716 123 305 ÷ 2 = 1 358 061 652 + 1;
  • 1 358 061 652 ÷ 2 = 679 030 826 + 0;
  • 679 030 826 ÷ 2 = 339 515 413 + 0;
  • 339 515 413 ÷ 2 = 169 757 706 + 1;
  • 169 757 706 ÷ 2 = 84 878 853 + 0;
  • 84 878 853 ÷ 2 = 42 439 426 + 1;
  • 42 439 426 ÷ 2 = 21 219 713 + 0;
  • 21 219 713 ÷ 2 = 10 609 856 + 1;
  • 10 609 856 ÷ 2 = 5 304 928 + 0;
  • 5 304 928 ÷ 2 = 2 652 464 + 0;
  • 2 652 464 ÷ 2 = 1 326 232 + 0;
  • 1 326 232 ÷ 2 = 663 116 + 0;
  • 663 116 ÷ 2 = 331 558 + 0;
  • 331 558 ÷ 2 = 165 779 + 0;
  • 165 779 ÷ 2 = 82 889 + 1;
  • 82 889 ÷ 2 = 41 444 + 1;
  • 41 444 ÷ 2 = 20 722 + 0;
  • 20 722 ÷ 2 = 10 361 + 0;
  • 10 361 ÷ 2 = 5 180 + 1;
  • 5 180 ÷ 2 = 2 590 + 0;
  • 2 590 ÷ 2 = 1 295 + 0;
  • 1 295 ÷ 2 = 647 + 1;
  • 647 ÷ 2 = 323 + 1;
  • 323 ÷ 2 = 161 + 1;
  • 161 ÷ 2 = 80 + 1;
  • 80 ÷ 2 = 40 + 0;
  • 40 ÷ 2 = 20 + 0;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 665 660 768 132 694 792(10) =


1010 0001 1110 0100 1100 0000 1010 1001 0100 1010 1100 0010 1000 0011 0000 1000(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 63 positions to the left, so that only one non zero digit remains to the left of it:


11 665 660 768 132 694 792(10) =


1010 0001 1110 0100 1100 0000 1010 1001 0100 1010 1100 0010 1000 0011 0000 1000(2) =


1010 0001 1110 0100 1100 0000 1010 1001 0100 1010 1100 0010 1000 0011 0000 1000(2) × 20 =


1.0100 0011 1100 1001 1000 0001 0101 0010 1001 0101 1000 0101 0000 0110 0001 000(2) × 263


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 63


Mantissa (not normalized):
1.0100 0011 1100 1001 1000 0001 0101 0010 1001 0101 1000 0101 0000 0110 0001 000


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


63 + 2(11-1) - 1 =


(63 + 1 023)(10) =


1 086(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 086 ÷ 2 = 543 + 0;
  • 543 ÷ 2 = 271 + 1;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1086(10) =


100 0011 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0011 1100 1001 1000 0001 0101 0010 1001 0101 1000 0101 0000 011 0000 1000 =


0100 0011 1100 1001 1000 0001 0101 0010 1001 0101 1000 0101 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 1110


Mantissa (52 bits) =
0100 0011 1100 1001 1000 0001 0101 0010 1001 0101 1000 0101 0000


The base ten decimal number 11 665 660 768 132 694 792 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 1110 - 0100 0011 1100 1001 1000 0001 0101 0010 1001 0101 1000 0101 0000

(64 bits IEEE 754)

Number 11 665 660 768 132 694 791 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 11 665 660 768 132 694 793 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 11 665 660 768 132 694 792 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:08 UTC (GMT)
Number 40.57 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:08 UTC (GMT)
Number 123 456 789 012 345.123 41 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 64.21 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number -479.7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 274.19 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 123 456.123 453 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 12 550 850 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number -2 621 330 390 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 1 127 107 692 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal