Convert the Number 1 157 890 338 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 1 157 890 338(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 157 890 338 ÷ 2 = 578 945 169 + 0;
  • 578 945 169 ÷ 2 = 289 472 584 + 1;
  • 289 472 584 ÷ 2 = 144 736 292 + 0;
  • 144 736 292 ÷ 2 = 72 368 146 + 0;
  • 72 368 146 ÷ 2 = 36 184 073 + 0;
  • 36 184 073 ÷ 2 = 18 092 036 + 1;
  • 18 092 036 ÷ 2 = 9 046 018 + 0;
  • 9 046 018 ÷ 2 = 4 523 009 + 0;
  • 4 523 009 ÷ 2 = 2 261 504 + 1;
  • 2 261 504 ÷ 2 = 1 130 752 + 0;
  • 1 130 752 ÷ 2 = 565 376 + 0;
  • 565 376 ÷ 2 = 282 688 + 0;
  • 282 688 ÷ 2 = 141 344 + 0;
  • 141 344 ÷ 2 = 70 672 + 0;
  • 70 672 ÷ 2 = 35 336 + 0;
  • 35 336 ÷ 2 = 17 668 + 0;
  • 17 668 ÷ 2 = 8 834 + 0;
  • 8 834 ÷ 2 = 4 417 + 0;
  • 4 417 ÷ 2 = 2 208 + 1;
  • 2 208 ÷ 2 = 1 104 + 0;
  • 1 104 ÷ 2 = 552 + 0;
  • 552 ÷ 2 = 276 + 0;
  • 276 ÷ 2 = 138 + 0;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 157 890 338(10) =


100 0101 0000 0100 0000 0001 0010 0010(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 30 positions to the left, so that only one non zero digit remains to the left of it:


1 157 890 338(10) =


100 0101 0000 0100 0000 0001 0010 0010(2) =


100 0101 0000 0100 0000 0001 0010 0010(2) × 20 =


1.0001 0100 0001 0000 0000 0100 1000 10(2) × 230


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 30


Mantissa (not normalized):
1.0001 0100 0001 0000 0000 0100 1000 10


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


30 + 2(11-1) - 1 =


(30 + 1 023)(10) =


1 053(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 053 ÷ 2 = 526 + 1;
  • 526 ÷ 2 = 263 + 0;
  • 263 ÷ 2 = 131 + 1;
  • 131 ÷ 2 = 65 + 1;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1053(10) =


100 0001 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 00 0101 0000 0100 0000 0001 0010 0010 00 0000 0000 0000 0000 0000 =


0001 0100 0001 0000 0000 0100 1000 1000 0000 0000 0000 0000 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0001 1101


Mantissa (52 bits) =
0001 0100 0001 0000 0000 0100 1000 1000 0000 0000 0000 0000 0000


The base ten decimal number 1 157 890 338 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0001 1101 - 0001 0100 0001 0000 0000 0100 1000 1000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number 1 157 890 337 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 1 157 890 339 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1 157 890 338 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 36.180 885 271 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 11 111 111 010 100 100 010 110 100 001 110 010 101 100 000 010 000 011 000 100 090 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 63 740 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 18 446 744 072 283 488 227 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 23.677 419 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 2.444 089 209 850 062 616 169 452 667 236 323 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number -0.016 738 891 601 562 527 755 575 615 628 913 510 590 791 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 32.003 906 726 895 372 969 465 825 008 228 421 211 242 675 781 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
Number 114 676 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:10 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal