Convert the Number 11 354 165 490 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 11 354 165 490(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 354 165 490 ÷ 2 = 5 677 082 745 + 0;
  • 5 677 082 745 ÷ 2 = 2 838 541 372 + 1;
  • 2 838 541 372 ÷ 2 = 1 419 270 686 + 0;
  • 1 419 270 686 ÷ 2 = 709 635 343 + 0;
  • 709 635 343 ÷ 2 = 354 817 671 + 1;
  • 354 817 671 ÷ 2 = 177 408 835 + 1;
  • 177 408 835 ÷ 2 = 88 704 417 + 1;
  • 88 704 417 ÷ 2 = 44 352 208 + 1;
  • 44 352 208 ÷ 2 = 22 176 104 + 0;
  • 22 176 104 ÷ 2 = 11 088 052 + 0;
  • 11 088 052 ÷ 2 = 5 544 026 + 0;
  • 5 544 026 ÷ 2 = 2 772 013 + 0;
  • 2 772 013 ÷ 2 = 1 386 006 + 1;
  • 1 386 006 ÷ 2 = 693 003 + 0;
  • 693 003 ÷ 2 = 346 501 + 1;
  • 346 501 ÷ 2 = 173 250 + 1;
  • 173 250 ÷ 2 = 86 625 + 0;
  • 86 625 ÷ 2 = 43 312 + 1;
  • 43 312 ÷ 2 = 21 656 + 0;
  • 21 656 ÷ 2 = 10 828 + 0;
  • 10 828 ÷ 2 = 5 414 + 0;
  • 5 414 ÷ 2 = 2 707 + 0;
  • 2 707 ÷ 2 = 1 353 + 1;
  • 1 353 ÷ 2 = 676 + 1;
  • 676 ÷ 2 = 338 + 0;
  • 338 ÷ 2 = 169 + 0;
  • 169 ÷ 2 = 84 + 1;
  • 84 ÷ 2 = 42 + 0;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 354 165 490(10) =


10 1010 0100 1100 0010 1101 0000 1111 0010(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 33 positions to the left, so that only one non zero digit remains to the left of it:


11 354 165 490(10) =


10 1010 0100 1100 0010 1101 0000 1111 0010(2) =


10 1010 0100 1100 0010 1101 0000 1111 0010(2) × 20 =


1.0101 0010 0110 0001 0110 1000 0111 1001 0(2) × 233


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 33


Mantissa (not normalized):
1.0101 0010 0110 0001 0110 1000 0111 1001 0


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


33 + 2(11-1) - 1 =


(33 + 1 023)(10) =


1 056(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 056 ÷ 2 = 528 + 0;
  • 528 ÷ 2 = 264 + 0;
  • 264 ÷ 2 = 132 + 0;
  • 132 ÷ 2 = 66 + 0;
  • 66 ÷ 2 = 33 + 0;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1056(10) =


100 0010 0000(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 0 1010 0100 1100 0010 1101 0000 1111 0010 000 0000 0000 0000 0000 =


0101 0010 0110 0001 0110 1000 0111 1001 0000 0000 0000 0000 0000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0010 0000


Mantissa (52 bits) =
0101 0010 0110 0001 0110 1000 0111 1001 0000 0000 0000 0000 0000


The base ten decimal number 11 354 165 490 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0010 0000 - 0101 0010 0110 0001 0110 1000 0111 1001 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number 11 354 165 489 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 11 354 165 491 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 11 354 165 490 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number -84.725 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number 11 001 100 001 010 100 998 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number 19 880 130 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number 1 025.9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:35 UTC (GMT)
Number 1.999 999 999 999 999 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:35 UTC (GMT)
Number 58.909 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:35 UTC (GMT)
Number -54 321.123 456 789 901 8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:35 UTC (GMT)
Number 112 369 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:35 UTC (GMT)
Number 27.257 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:35 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal