Convert the Number 1 125 899 900 000 013 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 1 125 899 900 000 013(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 125 899 900 000 013 ÷ 2 = 562 949 950 000 006 + 1;
  • 562 949 950 000 006 ÷ 2 = 281 474 975 000 003 + 0;
  • 281 474 975 000 003 ÷ 2 = 140 737 487 500 001 + 1;
  • 140 737 487 500 001 ÷ 2 = 70 368 743 750 000 + 1;
  • 70 368 743 750 000 ÷ 2 = 35 184 371 875 000 + 0;
  • 35 184 371 875 000 ÷ 2 = 17 592 185 937 500 + 0;
  • 17 592 185 937 500 ÷ 2 = 8 796 092 968 750 + 0;
  • 8 796 092 968 750 ÷ 2 = 4 398 046 484 375 + 0;
  • 4 398 046 484 375 ÷ 2 = 2 199 023 242 187 + 1;
  • 2 199 023 242 187 ÷ 2 = 1 099 511 621 093 + 1;
  • 1 099 511 621 093 ÷ 2 = 549 755 810 546 + 1;
  • 549 755 810 546 ÷ 2 = 274 877 905 273 + 0;
  • 274 877 905 273 ÷ 2 = 137 438 952 636 + 1;
  • 137 438 952 636 ÷ 2 = 68 719 476 318 + 0;
  • 68 719 476 318 ÷ 2 = 34 359 738 159 + 0;
  • 34 359 738 159 ÷ 2 = 17 179 869 079 + 1;
  • 17 179 869 079 ÷ 2 = 8 589 934 539 + 1;
  • 8 589 934 539 ÷ 2 = 4 294 967 269 + 1;
  • 4 294 967 269 ÷ 2 = 2 147 483 634 + 1;
  • 2 147 483 634 ÷ 2 = 1 073 741 817 + 0;
  • 1 073 741 817 ÷ 2 = 536 870 908 + 1;
  • 536 870 908 ÷ 2 = 268 435 454 + 0;
  • 268 435 454 ÷ 2 = 134 217 727 + 0;
  • 134 217 727 ÷ 2 = 67 108 863 + 1;
  • 67 108 863 ÷ 2 = 33 554 431 + 1;
  • 33 554 431 ÷ 2 = 16 777 215 + 1;
  • 16 777 215 ÷ 2 = 8 388 607 + 1;
  • 8 388 607 ÷ 2 = 4 194 303 + 1;
  • 4 194 303 ÷ 2 = 2 097 151 + 1;
  • 2 097 151 ÷ 2 = 1 048 575 + 1;
  • 1 048 575 ÷ 2 = 524 287 + 1;
  • 524 287 ÷ 2 = 262 143 + 1;
  • 262 143 ÷ 2 = 131 071 + 1;
  • 131 071 ÷ 2 = 65 535 + 1;
  • 65 535 ÷ 2 = 32 767 + 1;
  • 32 767 ÷ 2 = 16 383 + 1;
  • 16 383 ÷ 2 = 8 191 + 1;
  • 8 191 ÷ 2 = 4 095 + 1;
  • 4 095 ÷ 2 = 2 047 + 1;
  • 2 047 ÷ 2 = 1 023 + 1;
  • 1 023 ÷ 2 = 511 + 1;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 125 899 900 000 013(10) =


11 1111 1111 1111 1111 1111 1111 1001 0111 1001 0111 0000 1101(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 49 positions to the left, so that only one non zero digit remains to the left of it:


1 125 899 900 000 013(10) =


11 1111 1111 1111 1111 1111 1111 1001 0111 1001 0111 0000 1101(2) =


11 1111 1111 1111 1111 1111 1111 1001 0111 1001 0111 0000 1101(2) × 20 =


1.1111 1111 1111 1111 1111 1111 1100 1011 1100 1011 1000 0110 1(2) × 249


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 49


Mantissa (not normalized):
1.1111 1111 1111 1111 1111 1111 1100 1011 1100 1011 1000 0110 1


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


49 + 2(11-1) - 1 =


(49 + 1 023)(10) =


1 072(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 072 ÷ 2 = 536 + 0;
  • 536 ÷ 2 = 268 + 0;
  • 268 ÷ 2 = 134 + 0;
  • 134 ÷ 2 = 67 + 0;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1072(10) =


100 0011 0000(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 1 1111 1111 1111 1111 1111 1111 1001 0111 1001 0111 0000 1101 000 =


1111 1111 1111 1111 1111 1111 1100 1011 1100 1011 1000 0110 1000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 0000


Mantissa (52 bits) =
1111 1111 1111 1111 1111 1111 1100 1011 1100 1011 1000 0110 1000


The base ten decimal number 1 125 899 900 000 013 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 0000 - 1111 1111 1111 1111 1111 1111 1100 1011 1100 1011 1000 0110 1000

(64 bits IEEE 754)

Number 1 125 899 900 000 012 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 1 125 899 900 000 014 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1 125 899 900 000 013 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:50 UTC (GMT)
Number 987 654 321 987 654 293 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:50 UTC (GMT)
Number 1 844 674.407 8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
Number 0.015 98 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
Number 124.065 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
Number 69.696 969 696 969 696 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
Number 219.327 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
Number 18 399 372 803 260 878 328 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
Number 288 825 315 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
Number 123 456 793 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 14:49 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal