Convert 11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 980 to 64 Bit Double Precision IEEE 754 Binary Floating Point Standard, From a Number in Base 10 Decimal System

11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 980(10) to 64 bit double precision IEEE 754 binary floating point (1 bit for sign, 11 bits for exponent, 52 bits for mantissa) = ?

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 980 ÷ 2 = 5 555 555 555 050 500 549 999 999 999 999 999 999 999 999 999 999 999 999 999 990 + 0;
  • 5 555 555 555 050 500 549 999 999 999 999 999 999 999 999 999 999 999 999 999 990 ÷ 2 = 2 777 777 777 525 250 274 999 999 999 999 999 999 999 999 999 999 999 999 999 995 + 0;
  • 2 777 777 777 525 250 274 999 999 999 999 999 999 999 999 999 999 999 999 999 995 ÷ 2 = 1 388 888 888 762 625 137 499 999 999 999 999 999 999 999 999 999 999 999 999 997 + 1;
  • 1 388 888 888 762 625 137 499 999 999 999 999 999 999 999 999 999 999 999 999 997 ÷ 2 = 694 444 444 381 312 568 749 999 999 999 999 999 999 999 999 999 999 999 999 998 + 1;
  • 694 444 444 381 312 568 749 999 999 999 999 999 999 999 999 999 999 999 999 998 ÷ 2 = 347 222 222 190 656 284 374 999 999 999 999 999 999 999 999 999 999 999 999 999 + 0;
  • 347 222 222 190 656 284 374 999 999 999 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 173 611 111 095 328 142 187 499 999 999 999 999 999 999 999 999 999 999 999 999 + 1;
  • 173 611 111 095 328 142 187 499 999 999 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 86 805 555 547 664 071 093 749 999 999 999 999 999 999 999 999 999 999 999 999 + 1;
  • 86 805 555 547 664 071 093 749 999 999 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 43 402 777 773 832 035 546 874 999 999 999 999 999 999 999 999 999 999 999 999 + 1;
  • 43 402 777 773 832 035 546 874 999 999 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 21 701 388 886 916 017 773 437 499 999 999 999 999 999 999 999 999 999 999 999 + 1;
  • 21 701 388 886 916 017 773 437 499 999 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 10 850 694 443 458 008 886 718 749 999 999 999 999 999 999 999 999 999 999 999 + 1;
  • 10 850 694 443 458 008 886 718 749 999 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 5 425 347 221 729 004 443 359 374 999 999 999 999 999 999 999 999 999 999 999 + 1;
  • 5 425 347 221 729 004 443 359 374 999 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 2 712 673 610 864 502 221 679 687 499 999 999 999 999 999 999 999 999 999 999 + 1;
  • 2 712 673 610 864 502 221 679 687 499 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 1 356 336 805 432 251 110 839 843 749 999 999 999 999 999 999 999 999 999 999 + 1;
  • 1 356 336 805 432 251 110 839 843 749 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 678 168 402 716 125 555 419 921 874 999 999 999 999 999 999 999 999 999 999 + 1;
  • 678 168 402 716 125 555 419 921 874 999 999 999 999 999 999 999 999 999 999 ÷ 2 = 339 084 201 358 062 777 709 960 937 499 999 999 999 999 999 999 999 999 999 + 1;
  • 339 084 201 358 062 777 709 960 937 499 999 999 999 999 999 999 999 999 999 ÷ 2 = 169 542 100 679 031 388 854 980 468 749 999 999 999 999 999 999 999 999 999 + 1;
  • 169 542 100 679 031 388 854 980 468 749 999 999 999 999 999 999 999 999 999 ÷ 2 = 84 771 050 339 515 694 427 490 234 374 999 999 999 999 999 999 999 999 999 + 1;
  • 84 771 050 339 515 694 427 490 234 374 999 999 999 999 999 999 999 999 999 ÷ 2 = 42 385 525 169 757 847 213 745 117 187 499 999 999 999 999 999 999 999 999 + 1;
  • 42 385 525 169 757 847 213 745 117 187 499 999 999 999 999 999 999 999 999 ÷ 2 = 21 192 762 584 878 923 606 872 558 593 749 999 999 999 999 999 999 999 999 + 1;
  • 21 192 762 584 878 923 606 872 558 593 749 999 999 999 999 999 999 999 999 ÷ 2 = 10 596 381 292 439 461 803 436 279 296 874 999 999 999 999 999 999 999 999 + 1;
  • 10 596 381 292 439 461 803 436 279 296 874 999 999 999 999 999 999 999 999 ÷ 2 = 5 298 190 646 219 730 901 718 139 648 437 499 999 999 999 999 999 999 999 + 1;
  • 5 298 190 646 219 730 901 718 139 648 437 499 999 999 999 999 999 999 999 ÷ 2 = 2 649 095 323 109 865 450 859 069 824 218 749 999 999 999 999 999 999 999 + 1;
  • 2 649 095 323 109 865 450 859 069 824 218 749 999 999 999 999 999 999 999 ÷ 2 = 1 324 547 661 554 932 725 429 534 912 109 374 999 999 999 999 999 999 999 + 1;
  • 1 324 547 661 554 932 725 429 534 912 109 374 999 999 999 999 999 999 999 ÷ 2 = 662 273 830 777 466 362 714 767 456 054 687 499 999 999 999 999 999 999 + 1;
  • 662 273 830 777 466 362 714 767 456 054 687 499 999 999 999 999 999 999 ÷ 2 = 331 136 915 388 733 181 357 383 728 027 343 749 999 999 999 999 999 999 + 1;
  • 331 136 915 388 733 181 357 383 728 027 343 749 999 999 999 999 999 999 ÷ 2 = 165 568 457 694 366 590 678 691 864 013 671 874 999 999 999 999 999 999 + 1;
  • 165 568 457 694 366 590 678 691 864 013 671 874 999 999 999 999 999 999 ÷ 2 = 82 784 228 847 183 295 339 345 932 006 835 937 499 999 999 999 999 999 + 1;
  • 82 784 228 847 183 295 339 345 932 006 835 937 499 999 999 999 999 999 ÷ 2 = 41 392 114 423 591 647 669 672 966 003 417 968 749 999 999 999 999 999 + 1;
  • 41 392 114 423 591 647 669 672 966 003 417 968 749 999 999 999 999 999 ÷ 2 = 20 696 057 211 795 823 834 836 483 001 708 984 374 999 999 999 999 999 + 1;
  • 20 696 057 211 795 823 834 836 483 001 708 984 374 999 999 999 999 999 ÷ 2 = 10 348 028 605 897 911 917 418 241 500 854 492 187 499 999 999 999 999 + 1;
  • 10 348 028 605 897 911 917 418 241 500 854 492 187 499 999 999 999 999 ÷ 2 = 5 174 014 302 948 955 958 709 120 750 427 246 093 749 999 999 999 999 + 1;
  • 5 174 014 302 948 955 958 709 120 750 427 246 093 749 999 999 999 999 ÷ 2 = 2 587 007 151 474 477 979 354 560 375 213 623 046 874 999 999 999 999 + 1;
  • 2 587 007 151 474 477 979 354 560 375 213 623 046 874 999 999 999 999 ÷ 2 = 1 293 503 575 737 238 989 677 280 187 606 811 523 437 499 999 999 999 + 1;
  • 1 293 503 575 737 238 989 677 280 187 606 811 523 437 499 999 999 999 ÷ 2 = 646 751 787 868 619 494 838 640 093 803 405 761 718 749 999 999 999 + 1;
  • 646 751 787 868 619 494 838 640 093 803 405 761 718 749 999 999 999 ÷ 2 = 323 375 893 934 309 747 419 320 046 901 702 880 859 374 999 999 999 + 1;
  • 323 375 893 934 309 747 419 320 046 901 702 880 859 374 999 999 999 ÷ 2 = 161 687 946 967 154 873 709 660 023 450 851 440 429 687 499 999 999 + 1;
  • 161 687 946 967 154 873 709 660 023 450 851 440 429 687 499 999 999 ÷ 2 = 80 843 973 483 577 436 854 830 011 725 425 720 214 843 749 999 999 + 1;
  • 80 843 973 483 577 436 854 830 011 725 425 720 214 843 749 999 999 ÷ 2 = 40 421 986 741 788 718 427 415 005 862 712 860 107 421 874 999 999 + 1;
  • 40 421 986 741 788 718 427 415 005 862 712 860 107 421 874 999 999 ÷ 2 = 20 210 993 370 894 359 213 707 502 931 356 430 053 710 937 499 999 + 1;
  • 20 210 993 370 894 359 213 707 502 931 356 430 053 710 937 499 999 ÷ 2 = 10 105 496 685 447 179 606 853 751 465 678 215 026 855 468 749 999 + 1;
  • 10 105 496 685 447 179 606 853 751 465 678 215 026 855 468 749 999 ÷ 2 = 5 052 748 342 723 589 803 426 875 732 839 107 513 427 734 374 999 + 1;
  • 5 052 748 342 723 589 803 426 875 732 839 107 513 427 734 374 999 ÷ 2 = 2 526 374 171 361 794 901 713 437 866 419 553 756 713 867 187 499 + 1;
  • 2 526 374 171 361 794 901 713 437 866 419 553 756 713 867 187 499 ÷ 2 = 1 263 187 085 680 897 450 856 718 933 209 776 878 356 933 593 749 + 1;
  • 1 263 187 085 680 897 450 856 718 933 209 776 878 356 933 593 749 ÷ 2 = 631 593 542 840 448 725 428 359 466 604 888 439 178 466 796 874 + 1;
  • 631 593 542 840 448 725 428 359 466 604 888 439 178 466 796 874 ÷ 2 = 315 796 771 420 224 362 714 179 733 302 444 219 589 233 398 437 + 0;
  • 315 796 771 420 224 362 714 179 733 302 444 219 589 233 398 437 ÷ 2 = 157 898 385 710 112 181 357 089 866 651 222 109 794 616 699 218 + 1;
  • 157 898 385 710 112 181 357 089 866 651 222 109 794 616 699 218 ÷ 2 = 78 949 192 855 056 090 678 544 933 325 611 054 897 308 349 609 + 0;
  • 78 949 192 855 056 090 678 544 933 325 611 054 897 308 349 609 ÷ 2 = 39 474 596 427 528 045 339 272 466 662 805 527 448 654 174 804 + 1;
  • 39 474 596 427 528 045 339 272 466 662 805 527 448 654 174 804 ÷ 2 = 19 737 298 213 764 022 669 636 233 331 402 763 724 327 087 402 + 0;
  • 19 737 298 213 764 022 669 636 233 331 402 763 724 327 087 402 ÷ 2 = 9 868 649 106 882 011 334 818 116 665 701 381 862 163 543 701 + 0;
  • 9 868 649 106 882 011 334 818 116 665 701 381 862 163 543 701 ÷ 2 = 4 934 324 553 441 005 667 409 058 332 850 690 931 081 771 850 + 1;
  • 4 934 324 553 441 005 667 409 058 332 850 690 931 081 771 850 ÷ 2 = 2 467 162 276 720 502 833 704 529 166 425 345 465 540 885 925 + 0;
  • 2 467 162 276 720 502 833 704 529 166 425 345 465 540 885 925 ÷ 2 = 1 233 581 138 360 251 416 852 264 583 212 672 732 770 442 962 + 1;
  • 1 233 581 138 360 251 416 852 264 583 212 672 732 770 442 962 ÷ 2 = 616 790 569 180 125 708 426 132 291 606 336 366 385 221 481 + 0;
  • 616 790 569 180 125 708 426 132 291 606 336 366 385 221 481 ÷ 2 = 308 395 284 590 062 854 213 066 145 803 168 183 192 610 740 + 1;
  • 308 395 284 590 062 854 213 066 145 803 168 183 192 610 740 ÷ 2 = 154 197 642 295 031 427 106 533 072 901 584 091 596 305 370 + 0;
  • 154 197 642 295 031 427 106 533 072 901 584 091 596 305 370 ÷ 2 = 77 098 821 147 515 713 553 266 536 450 792 045 798 152 685 + 0;
  • 77 098 821 147 515 713 553 266 536 450 792 045 798 152 685 ÷ 2 = 38 549 410 573 757 856 776 633 268 225 396 022 899 076 342 + 1;
  • 38 549 410 573 757 856 776 633 268 225 396 022 899 076 342 ÷ 2 = 19 274 705 286 878 928 388 316 634 112 698 011 449 538 171 + 0;
  • 19 274 705 286 878 928 388 316 634 112 698 011 449 538 171 ÷ 2 = 9 637 352 643 439 464 194 158 317 056 349 005 724 769 085 + 1;
  • 9 637 352 643 439 464 194 158 317 056 349 005 724 769 085 ÷ 2 = 4 818 676 321 719 732 097 079 158 528 174 502 862 384 542 + 1;
  • 4 818 676 321 719 732 097 079 158 528 174 502 862 384 542 ÷ 2 = 2 409 338 160 859 866 048 539 579 264 087 251 431 192 271 + 0;
  • 2 409 338 160 859 866 048 539 579 264 087 251 431 192 271 ÷ 2 = 1 204 669 080 429 933 024 269 789 632 043 625 715 596 135 + 1;
  • 1 204 669 080 429 933 024 269 789 632 043 625 715 596 135 ÷ 2 = 602 334 540 214 966 512 134 894 816 021 812 857 798 067 + 1;
  • 602 334 540 214 966 512 134 894 816 021 812 857 798 067 ÷ 2 = 301 167 270 107 483 256 067 447 408 010 906 428 899 033 + 1;
  • 301 167 270 107 483 256 067 447 408 010 906 428 899 033 ÷ 2 = 150 583 635 053 741 628 033 723 704 005 453 214 449 516 + 1;
  • 150 583 635 053 741 628 033 723 704 005 453 214 449 516 ÷ 2 = 75 291 817 526 870 814 016 861 852 002 726 607 224 758 + 0;
  • 75 291 817 526 870 814 016 861 852 002 726 607 224 758 ÷ 2 = 37 645 908 763 435 407 008 430 926 001 363 303 612 379 + 0;
  • 37 645 908 763 435 407 008 430 926 001 363 303 612 379 ÷ 2 = 18 822 954 381 717 703 504 215 463 000 681 651 806 189 + 1;
  • 18 822 954 381 717 703 504 215 463 000 681 651 806 189 ÷ 2 = 9 411 477 190 858 851 752 107 731 500 340 825 903 094 + 1;
  • 9 411 477 190 858 851 752 107 731 500 340 825 903 094 ÷ 2 = 4 705 738 595 429 425 876 053 865 750 170 412 951 547 + 0;
  • 4 705 738 595 429 425 876 053 865 750 170 412 951 547 ÷ 2 = 2 352 869 297 714 712 938 026 932 875 085 206 475 773 + 1;
  • 2 352 869 297 714 712 938 026 932 875 085 206 475 773 ÷ 2 = 1 176 434 648 857 356 469 013 466 437 542 603 237 886 + 1;
  • 1 176 434 648 857 356 469 013 466 437 542 603 237 886 ÷ 2 = 588 217 324 428 678 234 506 733 218 771 301 618 943 + 0;
  • 588 217 324 428 678 234 506 733 218 771 301 618 943 ÷ 2 = 294 108 662 214 339 117 253 366 609 385 650 809 471 + 1;
  • 294 108 662 214 339 117 253 366 609 385 650 809 471 ÷ 2 = 147 054 331 107 169 558 626 683 304 692 825 404 735 + 1;
  • 147 054 331 107 169 558 626 683 304 692 825 404 735 ÷ 2 = 73 527 165 553 584 779 313 341 652 346 412 702 367 + 1;
  • 73 527 165 553 584 779 313 341 652 346 412 702 367 ÷ 2 = 36 763 582 776 792 389 656 670 826 173 206 351 183 + 1;
  • 36 763 582 776 792 389 656 670 826 173 206 351 183 ÷ 2 = 18 381 791 388 396 194 828 335 413 086 603 175 591 + 1;
  • 18 381 791 388 396 194 828 335 413 086 603 175 591 ÷ 2 = 9 190 895 694 198 097 414 167 706 543 301 587 795 + 1;
  • 9 190 895 694 198 097 414 167 706 543 301 587 795 ÷ 2 = 4 595 447 847 099 048 707 083 853 271 650 793 897 + 1;
  • 4 595 447 847 099 048 707 083 853 271 650 793 897 ÷ 2 = 2 297 723 923 549 524 353 541 926 635 825 396 948 + 1;
  • 2 297 723 923 549 524 353 541 926 635 825 396 948 ÷ 2 = 1 148 861 961 774 762 176 770 963 317 912 698 474 + 0;
  • 1 148 861 961 774 762 176 770 963 317 912 698 474 ÷ 2 = 574 430 980 887 381 088 385 481 658 956 349 237 + 0;
  • 574 430 980 887 381 088 385 481 658 956 349 237 ÷ 2 = 287 215 490 443 690 544 192 740 829 478 174 618 + 1;
  • 287 215 490 443 690 544 192 740 829 478 174 618 ÷ 2 = 143 607 745 221 845 272 096 370 414 739 087 309 + 0;
  • 143 607 745 221 845 272 096 370 414 739 087 309 ÷ 2 = 71 803 872 610 922 636 048 185 207 369 543 654 + 1;
  • 71 803 872 610 922 636 048 185 207 369 543 654 ÷ 2 = 35 901 936 305 461 318 024 092 603 684 771 827 + 0;
  • 35 901 936 305 461 318 024 092 603 684 771 827 ÷ 2 = 17 950 968 152 730 659 012 046 301 842 385 913 + 1;
  • 17 950 968 152 730 659 012 046 301 842 385 913 ÷ 2 = 8 975 484 076 365 329 506 023 150 921 192 956 + 1;
  • 8 975 484 076 365 329 506 023 150 921 192 956 ÷ 2 = 4 487 742 038 182 664 753 011 575 460 596 478 + 0;
  • 4 487 742 038 182 664 753 011 575 460 596 478 ÷ 2 = 2 243 871 019 091 332 376 505 787 730 298 239 + 0;
  • 2 243 871 019 091 332 376 505 787 730 298 239 ÷ 2 = 1 121 935 509 545 666 188 252 893 865 149 119 + 1;
  • 1 121 935 509 545 666 188 252 893 865 149 119 ÷ 2 = 560 967 754 772 833 094 126 446 932 574 559 + 1;
  • 560 967 754 772 833 094 126 446 932 574 559 ÷ 2 = 280 483 877 386 416 547 063 223 466 287 279 + 1;
  • 280 483 877 386 416 547 063 223 466 287 279 ÷ 2 = 140 241 938 693 208 273 531 611 733 143 639 + 1;
  • 140 241 938 693 208 273 531 611 733 143 639 ÷ 2 = 70 120 969 346 604 136 765 805 866 571 819 + 1;
  • 70 120 969 346 604 136 765 805 866 571 819 ÷ 2 = 35 060 484 673 302 068 382 902 933 285 909 + 1;
  • 35 060 484 673 302 068 382 902 933 285 909 ÷ 2 = 17 530 242 336 651 034 191 451 466 642 954 + 1;
  • 17 530 242 336 651 034 191 451 466 642 954 ÷ 2 = 8 765 121 168 325 517 095 725 733 321 477 + 0;
  • 8 765 121 168 325 517 095 725 733 321 477 ÷ 2 = 4 382 560 584 162 758 547 862 866 660 738 + 1;
  • 4 382 560 584 162 758 547 862 866 660 738 ÷ 2 = 2 191 280 292 081 379 273 931 433 330 369 + 0;
  • 2 191 280 292 081 379 273 931 433 330 369 ÷ 2 = 1 095 640 146 040 689 636 965 716 665 184 + 1;
  • 1 095 640 146 040 689 636 965 716 665 184 ÷ 2 = 547 820 073 020 344 818 482 858 332 592 + 0;
  • 547 820 073 020 344 818 482 858 332 592 ÷ 2 = 273 910 036 510 172 409 241 429 166 296 + 0;
  • 273 910 036 510 172 409 241 429 166 296 ÷ 2 = 136 955 018 255 086 204 620 714 583 148 + 0;
  • 136 955 018 255 086 204 620 714 583 148 ÷ 2 = 68 477 509 127 543 102 310 357 291 574 + 0;
  • 68 477 509 127 543 102 310 357 291 574 ÷ 2 = 34 238 754 563 771 551 155 178 645 787 + 0;
  • 34 238 754 563 771 551 155 178 645 787 ÷ 2 = 17 119 377 281 885 775 577 589 322 893 + 1;
  • 17 119 377 281 885 775 577 589 322 893 ÷ 2 = 8 559 688 640 942 887 788 794 661 446 + 1;
  • 8 559 688 640 942 887 788 794 661 446 ÷ 2 = 4 279 844 320 471 443 894 397 330 723 + 0;
  • 4 279 844 320 471 443 894 397 330 723 ÷ 2 = 2 139 922 160 235 721 947 198 665 361 + 1;
  • 2 139 922 160 235 721 947 198 665 361 ÷ 2 = 1 069 961 080 117 860 973 599 332 680 + 1;
  • 1 069 961 080 117 860 973 599 332 680 ÷ 2 = 534 980 540 058 930 486 799 666 340 + 0;
  • 534 980 540 058 930 486 799 666 340 ÷ 2 = 267 490 270 029 465 243 399 833 170 + 0;
  • 267 490 270 029 465 243 399 833 170 ÷ 2 = 133 745 135 014 732 621 699 916 585 + 0;
  • 133 745 135 014 732 621 699 916 585 ÷ 2 = 66 872 567 507 366 310 849 958 292 + 1;
  • 66 872 567 507 366 310 849 958 292 ÷ 2 = 33 436 283 753 683 155 424 979 146 + 0;
  • 33 436 283 753 683 155 424 979 146 ÷ 2 = 16 718 141 876 841 577 712 489 573 + 0;
  • 16 718 141 876 841 577 712 489 573 ÷ 2 = 8 359 070 938 420 788 856 244 786 + 1;
  • 8 359 070 938 420 788 856 244 786 ÷ 2 = 4 179 535 469 210 394 428 122 393 + 0;
  • 4 179 535 469 210 394 428 122 393 ÷ 2 = 2 089 767 734 605 197 214 061 196 + 1;
  • 2 089 767 734 605 197 214 061 196 ÷ 2 = 1 044 883 867 302 598 607 030 598 + 0;
  • 1 044 883 867 302 598 607 030 598 ÷ 2 = 522 441 933 651 299 303 515 299 + 0;
  • 522 441 933 651 299 303 515 299 ÷ 2 = 261 220 966 825 649 651 757 649 + 1;
  • 261 220 966 825 649 651 757 649 ÷ 2 = 130 610 483 412 824 825 878 824 + 1;
  • 130 610 483 412 824 825 878 824 ÷ 2 = 65 305 241 706 412 412 939 412 + 0;
  • 65 305 241 706 412 412 939 412 ÷ 2 = 32 652 620 853 206 206 469 706 + 0;
  • 32 652 620 853 206 206 469 706 ÷ 2 = 16 326 310 426 603 103 234 853 + 0;
  • 16 326 310 426 603 103 234 853 ÷ 2 = 8 163 155 213 301 551 617 426 + 1;
  • 8 163 155 213 301 551 617 426 ÷ 2 = 4 081 577 606 650 775 808 713 + 0;
  • 4 081 577 606 650 775 808 713 ÷ 2 = 2 040 788 803 325 387 904 356 + 1;
  • 2 040 788 803 325 387 904 356 ÷ 2 = 1 020 394 401 662 693 952 178 + 0;
  • 1 020 394 401 662 693 952 178 ÷ 2 = 510 197 200 831 346 976 089 + 0;
  • 510 197 200 831 346 976 089 ÷ 2 = 255 098 600 415 673 488 044 + 1;
  • 255 098 600 415 673 488 044 ÷ 2 = 127 549 300 207 836 744 022 + 0;
  • 127 549 300 207 836 744 022 ÷ 2 = 63 774 650 103 918 372 011 + 0;
  • 63 774 650 103 918 372 011 ÷ 2 = 31 887 325 051 959 186 005 + 1;
  • 31 887 325 051 959 186 005 ÷ 2 = 15 943 662 525 979 593 002 + 1;
  • 15 943 662 525 979 593 002 ÷ 2 = 7 971 831 262 989 796 501 + 0;
  • 7 971 831 262 989 796 501 ÷ 2 = 3 985 915 631 494 898 250 + 1;
  • 3 985 915 631 494 898 250 ÷ 2 = 1 992 957 815 747 449 125 + 0;
  • 1 992 957 815 747 449 125 ÷ 2 = 996 478 907 873 724 562 + 1;
  • 996 478 907 873 724 562 ÷ 2 = 498 239 453 936 862 281 + 0;
  • 498 239 453 936 862 281 ÷ 2 = 249 119 726 968 431 140 + 1;
  • 249 119 726 968 431 140 ÷ 2 = 124 559 863 484 215 570 + 0;
  • 124 559 863 484 215 570 ÷ 2 = 62 279 931 742 107 785 + 0;
  • 62 279 931 742 107 785 ÷ 2 = 31 139 965 871 053 892 + 1;
  • 31 139 965 871 053 892 ÷ 2 = 15 569 982 935 526 946 + 0;
  • 15 569 982 935 526 946 ÷ 2 = 7 784 991 467 763 473 + 0;
  • 7 784 991 467 763 473 ÷ 2 = 3 892 495 733 881 736 + 1;
  • 3 892 495 733 881 736 ÷ 2 = 1 946 247 866 940 868 + 0;
  • 1 946 247 866 940 868 ÷ 2 = 973 123 933 470 434 + 0;
  • 973 123 933 470 434 ÷ 2 = 486 561 966 735 217 + 0;
  • 486 561 966 735 217 ÷ 2 = 243 280 983 367 608 + 1;
  • 243 280 983 367 608 ÷ 2 = 121 640 491 683 804 + 0;
  • 121 640 491 683 804 ÷ 2 = 60 820 245 841 902 + 0;
  • 60 820 245 841 902 ÷ 2 = 30 410 122 920 951 + 0;
  • 30 410 122 920 951 ÷ 2 = 15 205 061 460 475 + 1;
  • 15 205 061 460 475 ÷ 2 = 7 602 530 730 237 + 1;
  • 7 602 530 730 237 ÷ 2 = 3 801 265 365 118 + 1;
  • 3 801 265 365 118 ÷ 2 = 1 900 632 682 559 + 0;
  • 1 900 632 682 559 ÷ 2 = 950 316 341 279 + 1;
  • 950 316 341 279 ÷ 2 = 475 158 170 639 + 1;
  • 475 158 170 639 ÷ 2 = 237 579 085 319 + 1;
  • 237 579 085 319 ÷ 2 = 118 789 542 659 + 1;
  • 118 789 542 659 ÷ 2 = 59 394 771 329 + 1;
  • 59 394 771 329 ÷ 2 = 29 697 385 664 + 1;
  • 29 697 385 664 ÷ 2 = 14 848 692 832 + 0;
  • 14 848 692 832 ÷ 2 = 7 424 346 416 + 0;
  • 7 424 346 416 ÷ 2 = 3 712 173 208 + 0;
  • 3 712 173 208 ÷ 2 = 1 856 086 604 + 0;
  • 1 856 086 604 ÷ 2 = 928 043 302 + 0;
  • 928 043 302 ÷ 2 = 464 021 651 + 0;
  • 464 021 651 ÷ 2 = 232 010 825 + 1;
  • 232 010 825 ÷ 2 = 116 005 412 + 1;
  • 116 005 412 ÷ 2 = 58 002 706 + 0;
  • 58 002 706 ÷ 2 = 29 001 353 + 0;
  • 29 001 353 ÷ 2 = 14 500 676 + 1;
  • 14 500 676 ÷ 2 = 7 250 338 + 0;
  • 7 250 338 ÷ 2 = 3 625 169 + 0;
  • 3 625 169 ÷ 2 = 1 812 584 + 1;
  • 1 812 584 ÷ 2 = 906 292 + 0;
  • 906 292 ÷ 2 = 453 146 + 0;
  • 453 146 ÷ 2 = 226 573 + 0;
  • 226 573 ÷ 2 = 113 286 + 1;
  • 113 286 ÷ 2 = 56 643 + 0;
  • 56 643 ÷ 2 = 28 321 + 1;
  • 28 321 ÷ 2 = 14 160 + 1;
  • 14 160 ÷ 2 = 7 080 + 0;
  • 7 080 ÷ 2 = 3 540 + 0;
  • 3 540 ÷ 2 = 1 770 + 0;
  • 1 770 ÷ 2 = 885 + 0;
  • 885 ÷ 2 = 442 + 1;
  • 442 ÷ 2 = 221 + 0;
  • 221 ÷ 2 = 110 + 1;
  • 110 ÷ 2 = 55 + 0;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 980(10) =


110 1110 1010 0001 1010 0010 0100 1100 0000 1111 1101 1100 0100 0100 1001 0101 0110 0100 1010 0011 0010 1001 0001 1011 0000 0101 0111 1111 0011 0101 0011 1111 1101 1011 0011 1101 1010 0101 0100 1010 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 202 positions to the left so that only one non zero digit remains to the left of it:


11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 980(10) =


110 1110 1010 0001 1010 0010 0100 1100 0000 1111 1101 1100 0100 0100 1001 0101 0110 0100 1010 0011 0010 1001 0001 1011 0000 0101 0111 1111 0011 0101 0011 1111 1101 1011 0011 1101 1010 0101 0100 1010 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2) =


110 1110 1010 0001 1010 0010 0100 1100 0000 1111 1101 1100 0100 0100 1001 0101 0110 0100 1010 0011 0010 1001 0001 1011 0000 0101 0111 1111 0011 0101 0011 1111 1101 1011 0011 1101 1010 0101 0100 1010 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2) × 20 =


1.1011 1010 1000 0110 1000 1001 0011 0000 0011 1111 0111 0001 0001 0010 0101 0101 1001 0010 1000 1100 1010 0100 0110 1100 0001 0101 1111 1100 1101 0100 1111 1111 0110 1100 1111 0110 1001 0101 0010 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1011 00(2) × 2202


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): 202


Mantissa (not normalized):
1.1011 1010 1000 0110 1000 1001 0011 0000 0011 1111 0111 0001 0001 0010 0101 0101 1001 0010 1000 1100 1010 0100 0110 1100 0001 0101 1111 1100 1101 0100 1111 1111 0110 1100 1111 0110 1001 0101 0010 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1011 00


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


202 + 2(11-1) - 1 =


(202 + 1 023)(10) =


1 225(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 225 ÷ 2 = 612 + 1;
  • 612 ÷ 2 = 306 + 0;
  • 306 ÷ 2 = 153 + 0;
  • 153 ÷ 2 = 76 + 1;
  • 76 ÷ 2 = 38 + 0;
  • 38 ÷ 2 = 19 + 0;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


1225(10) =


100 1100 1001(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1011 1010 1000 0110 1000 1001 0011 0000 0011 1111 0111 0001 0001 00 1001 0101 0110 0100 1010 0011 0010 1001 0001 1011 0000 0101 0111 1111 0011 0101 0011 1111 1101 1011 0011 1101 1010 0101 0100 1010 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100 =


1011 1010 1000 0110 1000 1001 0011 0000 0011 1111 0111 0001 0001


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 1100 1001


Mantissa (52 bits) =
1011 1010 1000 0110 1000 1001 0011 0000 0011 1111 0111 0001 0001


Number 11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 980 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point:
0 - 100 1100 1001 - 1011 1010 1000 0110 1000 1001 0011 0000 0011 1111 0111 0001 0001

(64 bits IEEE 754)

More operations of this kind:

11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 979 = ? ... 11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 981 = ?


Convert to 64 bit double precision IEEE 754 binary floating point standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes one bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

11 111 111 110 101 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 980 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:13 UTC (GMT)
28.538 337 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:11 UTC (GMT)
38.285 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:10 UTC (GMT)
22 327 481 343 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:10 UTC (GMT)
0.000 006 6 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:09 UTC (GMT)
0.049 979 169 8 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:08 UTC (GMT)
266 000 003 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:07 UTC (GMT)
0.321 928 05 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:06 UTC (GMT)
7 092 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:06 UTC (GMT)
678.000 7 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:05 UTC (GMT)
0.179 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:05 UTC (GMT)
0.785 398 163 397 448 163 2 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:05 UTC (GMT)
0.101 01 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 10:03 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100