Convert the Number 1 110 010 011 010 100 000 009 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 1 110 010 011 010 100 000 009(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 110 010 011 010 100 000 009 ÷ 2 = 555 005 005 505 050 000 004 + 1;
  • 555 005 005 505 050 000 004 ÷ 2 = 277 502 502 752 525 000 002 + 0;
  • 277 502 502 752 525 000 002 ÷ 2 = 138 751 251 376 262 500 001 + 0;
  • 138 751 251 376 262 500 001 ÷ 2 = 69 375 625 688 131 250 000 + 1;
  • 69 375 625 688 131 250 000 ÷ 2 = 34 687 812 844 065 625 000 + 0;
  • 34 687 812 844 065 625 000 ÷ 2 = 17 343 906 422 032 812 500 + 0;
  • 17 343 906 422 032 812 500 ÷ 2 = 8 671 953 211 016 406 250 + 0;
  • 8 671 953 211 016 406 250 ÷ 2 = 4 335 976 605 508 203 125 + 0;
  • 4 335 976 605 508 203 125 ÷ 2 = 2 167 988 302 754 101 562 + 1;
  • 2 167 988 302 754 101 562 ÷ 2 = 1 083 994 151 377 050 781 + 0;
  • 1 083 994 151 377 050 781 ÷ 2 = 541 997 075 688 525 390 + 1;
  • 541 997 075 688 525 390 ÷ 2 = 270 998 537 844 262 695 + 0;
  • 270 998 537 844 262 695 ÷ 2 = 135 499 268 922 131 347 + 1;
  • 135 499 268 922 131 347 ÷ 2 = 67 749 634 461 065 673 + 1;
  • 67 749 634 461 065 673 ÷ 2 = 33 874 817 230 532 836 + 1;
  • 33 874 817 230 532 836 ÷ 2 = 16 937 408 615 266 418 + 0;
  • 16 937 408 615 266 418 ÷ 2 = 8 468 704 307 633 209 + 0;
  • 8 468 704 307 633 209 ÷ 2 = 4 234 352 153 816 604 + 1;
  • 4 234 352 153 816 604 ÷ 2 = 2 117 176 076 908 302 + 0;
  • 2 117 176 076 908 302 ÷ 2 = 1 058 588 038 454 151 + 0;
  • 1 058 588 038 454 151 ÷ 2 = 529 294 019 227 075 + 1;
  • 529 294 019 227 075 ÷ 2 = 264 647 009 613 537 + 1;
  • 264 647 009 613 537 ÷ 2 = 132 323 504 806 768 + 1;
  • 132 323 504 806 768 ÷ 2 = 66 161 752 403 384 + 0;
  • 66 161 752 403 384 ÷ 2 = 33 080 876 201 692 + 0;
  • 33 080 876 201 692 ÷ 2 = 16 540 438 100 846 + 0;
  • 16 540 438 100 846 ÷ 2 = 8 270 219 050 423 + 0;
  • 8 270 219 050 423 ÷ 2 = 4 135 109 525 211 + 1;
  • 4 135 109 525 211 ÷ 2 = 2 067 554 762 605 + 1;
  • 2 067 554 762 605 ÷ 2 = 1 033 777 381 302 + 1;
  • 1 033 777 381 302 ÷ 2 = 516 888 690 651 + 0;
  • 516 888 690 651 ÷ 2 = 258 444 345 325 + 1;
  • 258 444 345 325 ÷ 2 = 129 222 172 662 + 1;
  • 129 222 172 662 ÷ 2 = 64 611 086 331 + 0;
  • 64 611 086 331 ÷ 2 = 32 305 543 165 + 1;
  • 32 305 543 165 ÷ 2 = 16 152 771 582 + 1;
  • 16 152 771 582 ÷ 2 = 8 076 385 791 + 0;
  • 8 076 385 791 ÷ 2 = 4 038 192 895 + 1;
  • 4 038 192 895 ÷ 2 = 2 019 096 447 + 1;
  • 2 019 096 447 ÷ 2 = 1 009 548 223 + 1;
  • 1 009 548 223 ÷ 2 = 504 774 111 + 1;
  • 504 774 111 ÷ 2 = 252 387 055 + 1;
  • 252 387 055 ÷ 2 = 126 193 527 + 1;
  • 126 193 527 ÷ 2 = 63 096 763 + 1;
  • 63 096 763 ÷ 2 = 31 548 381 + 1;
  • 31 548 381 ÷ 2 = 15 774 190 + 1;
  • 15 774 190 ÷ 2 = 7 887 095 + 0;
  • 7 887 095 ÷ 2 = 3 943 547 + 1;
  • 3 943 547 ÷ 2 = 1 971 773 + 1;
  • 1 971 773 ÷ 2 = 985 886 + 1;
  • 985 886 ÷ 2 = 492 943 + 0;
  • 492 943 ÷ 2 = 246 471 + 1;
  • 246 471 ÷ 2 = 123 235 + 1;
  • 123 235 ÷ 2 = 61 617 + 1;
  • 61 617 ÷ 2 = 30 808 + 1;
  • 30 808 ÷ 2 = 15 404 + 0;
  • 15 404 ÷ 2 = 7 702 + 0;
  • 7 702 ÷ 2 = 3 851 + 0;
  • 3 851 ÷ 2 = 1 925 + 1;
  • 1 925 ÷ 2 = 962 + 1;
  • 962 ÷ 2 = 481 + 0;
  • 481 ÷ 2 = 240 + 1;
  • 240 ÷ 2 = 120 + 0;
  • 120 ÷ 2 = 60 + 0;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 110 010 011 010 100 000 009(10) =


11 1100 0010 1100 0111 1011 1011 1111 1110 1101 1011 1000 0111 0010 0111 0101 0000 1001(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 69 positions to the left, so that only one non zero digit remains to the left of it:


1 110 010 011 010 100 000 009(10) =


11 1100 0010 1100 0111 1011 1011 1111 1110 1101 1011 1000 0111 0010 0111 0101 0000 1001(2) =


11 1100 0010 1100 0111 1011 1011 1111 1110 1101 1011 1000 0111 0010 0111 0101 0000 1001(2) × 20 =


1.1110 0001 0110 0011 1101 1101 1111 1111 0110 1101 1100 0011 1001 0011 1010 1000 0100 1(2) × 269


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 69


Mantissa (not normalized):
1.1110 0001 0110 0011 1101 1101 1111 1111 0110 1101 1100 0011 1001 0011 1010 1000 0100 1


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


69 + 2(11-1) - 1 =


(69 + 1 023)(10) =


1 092(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 092 ÷ 2 = 546 + 0;
  • 546 ÷ 2 = 273 + 0;
  • 273 ÷ 2 = 136 + 1;
  • 136 ÷ 2 = 68 + 0;
  • 68 ÷ 2 = 34 + 0;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1092(10) =


100 0100 0100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1110 0001 0110 0011 1101 1101 1111 1111 0110 1101 1100 0011 1001 0 0111 0101 0000 1001 =


1110 0001 0110 0011 1101 1101 1111 1111 0110 1101 1100 0011 1001


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0100 0100


Mantissa (52 bits) =
1110 0001 0110 0011 1101 1101 1111 1111 0110 1101 1100 0011 1001


The base ten decimal number 1 110 010 011 010 100 000 009 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0100 0100 - 1110 0001 0110 0011 1101 1101 1111 1111 0110 1101 1100 0011 1001

(64 bits IEEE 754)

Number 1 110 010 011 010 100 000 008 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 1 110 010 011 010 100 000 010 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1 110 010 011 010 100 000 009 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number 5 079.524 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number 2 253 690.096 352 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number -2 001.230 014 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number 70 300 024 705 028 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number -2 532 512.215 29 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number -62 278 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 984 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number -274.091 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number 823 549.664 582 642 758 703 551 187 066 422 004 074 982 777 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
Number 33.780 086 699 999 998 245 402 821 339 666 843 414 306 65 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:19 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal