Convert the Number 1 101 110 011 110 027 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 1 101 110 011 110 027(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 101 110 011 110 027 ÷ 2 = 550 555 005 555 013 + 1;
  • 550 555 005 555 013 ÷ 2 = 275 277 502 777 506 + 1;
  • 275 277 502 777 506 ÷ 2 = 137 638 751 388 753 + 0;
  • 137 638 751 388 753 ÷ 2 = 68 819 375 694 376 + 1;
  • 68 819 375 694 376 ÷ 2 = 34 409 687 847 188 + 0;
  • 34 409 687 847 188 ÷ 2 = 17 204 843 923 594 + 0;
  • 17 204 843 923 594 ÷ 2 = 8 602 421 961 797 + 0;
  • 8 602 421 961 797 ÷ 2 = 4 301 210 980 898 + 1;
  • 4 301 210 980 898 ÷ 2 = 2 150 605 490 449 + 0;
  • 2 150 605 490 449 ÷ 2 = 1 075 302 745 224 + 1;
  • 1 075 302 745 224 ÷ 2 = 537 651 372 612 + 0;
  • 537 651 372 612 ÷ 2 = 268 825 686 306 + 0;
  • 268 825 686 306 ÷ 2 = 134 412 843 153 + 0;
  • 134 412 843 153 ÷ 2 = 67 206 421 576 + 1;
  • 67 206 421 576 ÷ 2 = 33 603 210 788 + 0;
  • 33 603 210 788 ÷ 2 = 16 801 605 394 + 0;
  • 16 801 605 394 ÷ 2 = 8 400 802 697 + 0;
  • 8 400 802 697 ÷ 2 = 4 200 401 348 + 1;
  • 4 200 401 348 ÷ 2 = 2 100 200 674 + 0;
  • 2 100 200 674 ÷ 2 = 1 050 100 337 + 0;
  • 1 050 100 337 ÷ 2 = 525 050 168 + 1;
  • 525 050 168 ÷ 2 = 262 525 084 + 0;
  • 262 525 084 ÷ 2 = 131 262 542 + 0;
  • 131 262 542 ÷ 2 = 65 631 271 + 0;
  • 65 631 271 ÷ 2 = 32 815 635 + 1;
  • 32 815 635 ÷ 2 = 16 407 817 + 1;
  • 16 407 817 ÷ 2 = 8 203 908 + 1;
  • 8 203 908 ÷ 2 = 4 101 954 + 0;
  • 4 101 954 ÷ 2 = 2 050 977 + 0;
  • 2 050 977 ÷ 2 = 1 025 488 + 1;
  • 1 025 488 ÷ 2 = 512 744 + 0;
  • 512 744 ÷ 2 = 256 372 + 0;
  • 256 372 ÷ 2 = 128 186 + 0;
  • 128 186 ÷ 2 = 64 093 + 0;
  • 64 093 ÷ 2 = 32 046 + 1;
  • 32 046 ÷ 2 = 16 023 + 0;
  • 16 023 ÷ 2 = 8 011 + 1;
  • 8 011 ÷ 2 = 4 005 + 1;
  • 4 005 ÷ 2 = 2 002 + 1;
  • 2 002 ÷ 2 = 1 001 + 0;
  • 1 001 ÷ 2 = 500 + 1;
  • 500 ÷ 2 = 250 + 0;
  • 250 ÷ 2 = 125 + 0;
  • 125 ÷ 2 = 62 + 1;
  • 62 ÷ 2 = 31 + 0;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 101 110 011 110 027(10) =


11 1110 1001 0111 0100 0010 0111 0001 0010 0010 0010 1000 1011(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 49 positions to the left, so that only one non zero digit remains to the left of it:


1 101 110 011 110 027(10) =


11 1110 1001 0111 0100 0010 0111 0001 0010 0010 0010 1000 1011(2) =


11 1110 1001 0111 0100 0010 0111 0001 0010 0010 0010 1000 1011(2) × 20 =


1.1111 0100 1011 1010 0001 0011 1000 1001 0001 0001 0100 0101 1(2) × 249


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 49


Mantissa (not normalized):
1.1111 0100 1011 1010 0001 0011 1000 1001 0001 0001 0100 0101 1


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


49 + 2(11-1) - 1 =


(49 + 1 023)(10) =


1 072(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 072 ÷ 2 = 536 + 0;
  • 536 ÷ 2 = 268 + 0;
  • 268 ÷ 2 = 134 + 0;
  • 134 ÷ 2 = 67 + 0;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1072(10) =


100 0011 0000(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 1 1110 1001 0111 0100 0010 0111 0001 0010 0010 0010 1000 1011 000 =


1111 0100 1011 1010 0001 0011 1000 1001 0001 0001 0100 0101 1000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 0000


Mantissa (52 bits) =
1111 0100 1011 1010 0001 0011 1000 1001 0001 0001 0100 0101 1000


The base ten decimal number 1 101 110 011 110 027 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 0000 - 1111 0100 1011 1010 0001 0011 1000 1001 0001 0001 0100 0101 1000

(64 bits IEEE 754)

Number 1 101 110 011 110 026 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 1 101 110 011 110 028 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1 101 110 011 110 027 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:35 UTC (GMT)
Number 1 608 144 703 084 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 1 623 680 548 774 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 255.056 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 3 601 167 058 872 782 518 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 1.333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 38 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 1 234 567 890 000 000 000 000 000 000 009 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 20 200 177 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 1 644 851 070.247 892 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
Number 12.345 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:34 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal