Convert 1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 006 to 64 Bit Double Precision IEEE 754 Binary Floating Point Standard, From a Number in Base 10 Decimal System

1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 006(10) to 64 bit double precision IEEE 754 binary floating point (1 bit for sign, 11 bits for exponent, 52 bits for mantissa) = ?

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 006 ÷ 2 = 505 555 555 505 500 000 000 000 000 000 000 000 000 000 000 000 000 003 + 0;
  • 505 555 555 505 500 000 000 000 000 000 000 000 000 000 000 000 000 003 ÷ 2 = 252 777 777 752 750 000 000 000 000 000 000 000 000 000 000 000 000 001 + 1;
  • 252 777 777 752 750 000 000 000 000 000 000 000 000 000 000 000 000 001 ÷ 2 = 126 388 888 876 375 000 000 000 000 000 000 000 000 000 000 000 000 000 + 1;
  • 126 388 888 876 375 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 63 194 444 438 187 500 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 63 194 444 438 187 500 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 31 597 222 219 093 750 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 31 597 222 219 093 750 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 15 798 611 109 546 875 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 15 798 611 109 546 875 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 7 899 305 554 773 437 500 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 7 899 305 554 773 437 500 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 3 949 652 777 386 718 750 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 3 949 652 777 386 718 750 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 1 974 826 388 693 359 375 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 1 974 826 388 693 359 375 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 987 413 194 346 679 687 500 000 000 000 000 000 000 000 000 000 000 + 0;
  • 987 413 194 346 679 687 500 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 493 706 597 173 339 843 750 000 000 000 000 000 000 000 000 000 000 + 0;
  • 493 706 597 173 339 843 750 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 246 853 298 586 669 921 875 000 000 000 000 000 000 000 000 000 000 + 0;
  • 246 853 298 586 669 921 875 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 123 426 649 293 334 960 937 500 000 000 000 000 000 000 000 000 000 + 0;
  • 123 426 649 293 334 960 937 500 000 000 000 000 000 000 000 000 000 ÷ 2 = 61 713 324 646 667 480 468 750 000 000 000 000 000 000 000 000 000 + 0;
  • 61 713 324 646 667 480 468 750 000 000 000 000 000 000 000 000 000 ÷ 2 = 30 856 662 323 333 740 234 375 000 000 000 000 000 000 000 000 000 + 0;
  • 30 856 662 323 333 740 234 375 000 000 000 000 000 000 000 000 000 ÷ 2 = 15 428 331 161 666 870 117 187 500 000 000 000 000 000 000 000 000 + 0;
  • 15 428 331 161 666 870 117 187 500 000 000 000 000 000 000 000 000 ÷ 2 = 7 714 165 580 833 435 058 593 750 000 000 000 000 000 000 000 000 + 0;
  • 7 714 165 580 833 435 058 593 750 000 000 000 000 000 000 000 000 ÷ 2 = 3 857 082 790 416 717 529 296 875 000 000 000 000 000 000 000 000 + 0;
  • 3 857 082 790 416 717 529 296 875 000 000 000 000 000 000 000 000 ÷ 2 = 1 928 541 395 208 358 764 648 437 500 000 000 000 000 000 000 000 + 0;
  • 1 928 541 395 208 358 764 648 437 500 000 000 000 000 000 000 000 ÷ 2 = 964 270 697 604 179 382 324 218 750 000 000 000 000 000 000 000 + 0;
  • 964 270 697 604 179 382 324 218 750 000 000 000 000 000 000 000 ÷ 2 = 482 135 348 802 089 691 162 109 375 000 000 000 000 000 000 000 + 0;
  • 482 135 348 802 089 691 162 109 375 000 000 000 000 000 000 000 ÷ 2 = 241 067 674 401 044 845 581 054 687 500 000 000 000 000 000 000 + 0;
  • 241 067 674 401 044 845 581 054 687 500 000 000 000 000 000 000 ÷ 2 = 120 533 837 200 522 422 790 527 343 750 000 000 000 000 000 000 + 0;
  • 120 533 837 200 522 422 790 527 343 750 000 000 000 000 000 000 ÷ 2 = 60 266 918 600 261 211 395 263 671 875 000 000 000 000 000 000 + 0;
  • 60 266 918 600 261 211 395 263 671 875 000 000 000 000 000 000 ÷ 2 = 30 133 459 300 130 605 697 631 835 937 500 000 000 000 000 000 + 0;
  • 30 133 459 300 130 605 697 631 835 937 500 000 000 000 000 000 ÷ 2 = 15 066 729 650 065 302 848 815 917 968 750 000 000 000 000 000 + 0;
  • 15 066 729 650 065 302 848 815 917 968 750 000 000 000 000 000 ÷ 2 = 7 533 364 825 032 651 424 407 958 984 375 000 000 000 000 000 + 0;
  • 7 533 364 825 032 651 424 407 958 984 375 000 000 000 000 000 ÷ 2 = 3 766 682 412 516 325 712 203 979 492 187 500 000 000 000 000 + 0;
  • 3 766 682 412 516 325 712 203 979 492 187 500 000 000 000 000 ÷ 2 = 1 883 341 206 258 162 856 101 989 746 093 750 000 000 000 000 + 0;
  • 1 883 341 206 258 162 856 101 989 746 093 750 000 000 000 000 ÷ 2 = 941 670 603 129 081 428 050 994 873 046 875 000 000 000 000 + 0;
  • 941 670 603 129 081 428 050 994 873 046 875 000 000 000 000 ÷ 2 = 470 835 301 564 540 714 025 497 436 523 437 500 000 000 000 + 0;
  • 470 835 301 564 540 714 025 497 436 523 437 500 000 000 000 ÷ 2 = 235 417 650 782 270 357 012 748 718 261 718 750 000 000 000 + 0;
  • 235 417 650 782 270 357 012 748 718 261 718 750 000 000 000 ÷ 2 = 117 708 825 391 135 178 506 374 359 130 859 375 000 000 000 + 0;
  • 117 708 825 391 135 178 506 374 359 130 859 375 000 000 000 ÷ 2 = 58 854 412 695 567 589 253 187 179 565 429 687 500 000 000 + 0;
  • 58 854 412 695 567 589 253 187 179 565 429 687 500 000 000 ÷ 2 = 29 427 206 347 783 794 626 593 589 782 714 843 750 000 000 + 0;
  • 29 427 206 347 783 794 626 593 589 782 714 843 750 000 000 ÷ 2 = 14 713 603 173 891 897 313 296 794 891 357 421 875 000 000 + 0;
  • 14 713 603 173 891 897 313 296 794 891 357 421 875 000 000 ÷ 2 = 7 356 801 586 945 948 656 648 397 445 678 710 937 500 000 + 0;
  • 7 356 801 586 945 948 656 648 397 445 678 710 937 500 000 ÷ 2 = 3 678 400 793 472 974 328 324 198 722 839 355 468 750 000 + 0;
  • 3 678 400 793 472 974 328 324 198 722 839 355 468 750 000 ÷ 2 = 1 839 200 396 736 487 164 162 099 361 419 677 734 375 000 + 0;
  • 1 839 200 396 736 487 164 162 099 361 419 677 734 375 000 ÷ 2 = 919 600 198 368 243 582 081 049 680 709 838 867 187 500 + 0;
  • 919 600 198 368 243 582 081 049 680 709 838 867 187 500 ÷ 2 = 459 800 099 184 121 791 040 524 840 354 919 433 593 750 + 0;
  • 459 800 099 184 121 791 040 524 840 354 919 433 593 750 ÷ 2 = 229 900 049 592 060 895 520 262 420 177 459 716 796 875 + 0;
  • 229 900 049 592 060 895 520 262 420 177 459 716 796 875 ÷ 2 = 114 950 024 796 030 447 760 131 210 088 729 858 398 437 + 1;
  • 114 950 024 796 030 447 760 131 210 088 729 858 398 437 ÷ 2 = 57 475 012 398 015 223 880 065 605 044 364 929 199 218 + 1;
  • 57 475 012 398 015 223 880 065 605 044 364 929 199 218 ÷ 2 = 28 737 506 199 007 611 940 032 802 522 182 464 599 609 + 0;
  • 28 737 506 199 007 611 940 032 802 522 182 464 599 609 ÷ 2 = 14 368 753 099 503 805 970 016 401 261 091 232 299 804 + 1;
  • 14 368 753 099 503 805 970 016 401 261 091 232 299 804 ÷ 2 = 7 184 376 549 751 902 985 008 200 630 545 616 149 902 + 0;
  • 7 184 376 549 751 902 985 008 200 630 545 616 149 902 ÷ 2 = 3 592 188 274 875 951 492 504 100 315 272 808 074 951 + 0;
  • 3 592 188 274 875 951 492 504 100 315 272 808 074 951 ÷ 2 = 1 796 094 137 437 975 746 252 050 157 636 404 037 475 + 1;
  • 1 796 094 137 437 975 746 252 050 157 636 404 037 475 ÷ 2 = 898 047 068 718 987 873 126 025 078 818 202 018 737 + 1;
  • 898 047 068 718 987 873 126 025 078 818 202 018 737 ÷ 2 = 449 023 534 359 493 936 563 012 539 409 101 009 368 + 1;
  • 449 023 534 359 493 936 563 012 539 409 101 009 368 ÷ 2 = 224 511 767 179 746 968 281 506 269 704 550 504 684 + 0;
  • 224 511 767 179 746 968 281 506 269 704 550 504 684 ÷ 2 = 112 255 883 589 873 484 140 753 134 852 275 252 342 + 0;
  • 112 255 883 589 873 484 140 753 134 852 275 252 342 ÷ 2 = 56 127 941 794 936 742 070 376 567 426 137 626 171 + 0;
  • 56 127 941 794 936 742 070 376 567 426 137 626 171 ÷ 2 = 28 063 970 897 468 371 035 188 283 713 068 813 085 + 1;
  • 28 063 970 897 468 371 035 188 283 713 068 813 085 ÷ 2 = 14 031 985 448 734 185 517 594 141 856 534 406 542 + 1;
  • 14 031 985 448 734 185 517 594 141 856 534 406 542 ÷ 2 = 7 015 992 724 367 092 758 797 070 928 267 203 271 + 0;
  • 7 015 992 724 367 092 758 797 070 928 267 203 271 ÷ 2 = 3 507 996 362 183 546 379 398 535 464 133 601 635 + 1;
  • 3 507 996 362 183 546 379 398 535 464 133 601 635 ÷ 2 = 1 753 998 181 091 773 189 699 267 732 066 800 817 + 1;
  • 1 753 998 181 091 773 189 699 267 732 066 800 817 ÷ 2 = 876 999 090 545 886 594 849 633 866 033 400 408 + 1;
  • 876 999 090 545 886 594 849 633 866 033 400 408 ÷ 2 = 438 499 545 272 943 297 424 816 933 016 700 204 + 0;
  • 438 499 545 272 943 297 424 816 933 016 700 204 ÷ 2 = 219 249 772 636 471 648 712 408 466 508 350 102 + 0;
  • 219 249 772 636 471 648 712 408 466 508 350 102 ÷ 2 = 109 624 886 318 235 824 356 204 233 254 175 051 + 0;
  • 109 624 886 318 235 824 356 204 233 254 175 051 ÷ 2 = 54 812 443 159 117 912 178 102 116 627 087 525 + 1;
  • 54 812 443 159 117 912 178 102 116 627 087 525 ÷ 2 = 27 406 221 579 558 956 089 051 058 313 543 762 + 1;
  • 27 406 221 579 558 956 089 051 058 313 543 762 ÷ 2 = 13 703 110 789 779 478 044 525 529 156 771 881 + 0;
  • 13 703 110 789 779 478 044 525 529 156 771 881 ÷ 2 = 6 851 555 394 889 739 022 262 764 578 385 940 + 1;
  • 6 851 555 394 889 739 022 262 764 578 385 940 ÷ 2 = 3 425 777 697 444 869 511 131 382 289 192 970 + 0;
  • 3 425 777 697 444 869 511 131 382 289 192 970 ÷ 2 = 1 712 888 848 722 434 755 565 691 144 596 485 + 0;
  • 1 712 888 848 722 434 755 565 691 144 596 485 ÷ 2 = 856 444 424 361 217 377 782 845 572 298 242 + 1;
  • 856 444 424 361 217 377 782 845 572 298 242 ÷ 2 = 428 222 212 180 608 688 891 422 786 149 121 + 0;
  • 428 222 212 180 608 688 891 422 786 149 121 ÷ 2 = 214 111 106 090 304 344 445 711 393 074 560 + 1;
  • 214 111 106 090 304 344 445 711 393 074 560 ÷ 2 = 107 055 553 045 152 172 222 855 696 537 280 + 0;
  • 107 055 553 045 152 172 222 855 696 537 280 ÷ 2 = 53 527 776 522 576 086 111 427 848 268 640 + 0;
  • 53 527 776 522 576 086 111 427 848 268 640 ÷ 2 = 26 763 888 261 288 043 055 713 924 134 320 + 0;
  • 26 763 888 261 288 043 055 713 924 134 320 ÷ 2 = 13 381 944 130 644 021 527 856 962 067 160 + 0;
  • 13 381 944 130 644 021 527 856 962 067 160 ÷ 2 = 6 690 972 065 322 010 763 928 481 033 580 + 0;
  • 6 690 972 065 322 010 763 928 481 033 580 ÷ 2 = 3 345 486 032 661 005 381 964 240 516 790 + 0;
  • 3 345 486 032 661 005 381 964 240 516 790 ÷ 2 = 1 672 743 016 330 502 690 982 120 258 395 + 0;
  • 1 672 743 016 330 502 690 982 120 258 395 ÷ 2 = 836 371 508 165 251 345 491 060 129 197 + 1;
  • 836 371 508 165 251 345 491 060 129 197 ÷ 2 = 418 185 754 082 625 672 745 530 064 598 + 1;
  • 418 185 754 082 625 672 745 530 064 598 ÷ 2 = 209 092 877 041 312 836 372 765 032 299 + 0;
  • 209 092 877 041 312 836 372 765 032 299 ÷ 2 = 104 546 438 520 656 418 186 382 516 149 + 1;
  • 104 546 438 520 656 418 186 382 516 149 ÷ 2 = 52 273 219 260 328 209 093 191 258 074 + 1;
  • 52 273 219 260 328 209 093 191 258 074 ÷ 2 = 26 136 609 630 164 104 546 595 629 037 + 0;
  • 26 136 609 630 164 104 546 595 629 037 ÷ 2 = 13 068 304 815 082 052 273 297 814 518 + 1;
  • 13 068 304 815 082 052 273 297 814 518 ÷ 2 = 6 534 152 407 541 026 136 648 907 259 + 0;
  • 6 534 152 407 541 026 136 648 907 259 ÷ 2 = 3 267 076 203 770 513 068 324 453 629 + 1;
  • 3 267 076 203 770 513 068 324 453 629 ÷ 2 = 1 633 538 101 885 256 534 162 226 814 + 1;
  • 1 633 538 101 885 256 534 162 226 814 ÷ 2 = 816 769 050 942 628 267 081 113 407 + 0;
  • 816 769 050 942 628 267 081 113 407 ÷ 2 = 408 384 525 471 314 133 540 556 703 + 1;
  • 408 384 525 471 314 133 540 556 703 ÷ 2 = 204 192 262 735 657 066 770 278 351 + 1;
  • 204 192 262 735 657 066 770 278 351 ÷ 2 = 102 096 131 367 828 533 385 139 175 + 1;
  • 102 096 131 367 828 533 385 139 175 ÷ 2 = 51 048 065 683 914 266 692 569 587 + 1;
  • 51 048 065 683 914 266 692 569 587 ÷ 2 = 25 524 032 841 957 133 346 284 793 + 1;
  • 25 524 032 841 957 133 346 284 793 ÷ 2 = 12 762 016 420 978 566 673 142 396 + 1;
  • 12 762 016 420 978 566 673 142 396 ÷ 2 = 6 381 008 210 489 283 336 571 198 + 0;
  • 6 381 008 210 489 283 336 571 198 ÷ 2 = 3 190 504 105 244 641 668 285 599 + 0;
  • 3 190 504 105 244 641 668 285 599 ÷ 2 = 1 595 252 052 622 320 834 142 799 + 1;
  • 1 595 252 052 622 320 834 142 799 ÷ 2 = 797 626 026 311 160 417 071 399 + 1;
  • 797 626 026 311 160 417 071 399 ÷ 2 = 398 813 013 155 580 208 535 699 + 1;
  • 398 813 013 155 580 208 535 699 ÷ 2 = 199 406 506 577 790 104 267 849 + 1;
  • 199 406 506 577 790 104 267 849 ÷ 2 = 99 703 253 288 895 052 133 924 + 1;
  • 99 703 253 288 895 052 133 924 ÷ 2 = 49 851 626 644 447 526 066 962 + 0;
  • 49 851 626 644 447 526 066 962 ÷ 2 = 24 925 813 322 223 763 033 481 + 0;
  • 24 925 813 322 223 763 033 481 ÷ 2 = 12 462 906 661 111 881 516 740 + 1;
  • 12 462 906 661 111 881 516 740 ÷ 2 = 6 231 453 330 555 940 758 370 + 0;
  • 6 231 453 330 555 940 758 370 ÷ 2 = 3 115 726 665 277 970 379 185 + 0;
  • 3 115 726 665 277 970 379 185 ÷ 2 = 1 557 863 332 638 985 189 592 + 1;
  • 1 557 863 332 638 985 189 592 ÷ 2 = 778 931 666 319 492 594 796 + 0;
  • 778 931 666 319 492 594 796 ÷ 2 = 389 465 833 159 746 297 398 + 0;
  • 389 465 833 159 746 297 398 ÷ 2 = 194 732 916 579 873 148 699 + 0;
  • 194 732 916 579 873 148 699 ÷ 2 = 97 366 458 289 936 574 349 + 1;
  • 97 366 458 289 936 574 349 ÷ 2 = 48 683 229 144 968 287 174 + 1;
  • 48 683 229 144 968 287 174 ÷ 2 = 24 341 614 572 484 143 587 + 0;
  • 24 341 614 572 484 143 587 ÷ 2 = 12 170 807 286 242 071 793 + 1;
  • 12 170 807 286 242 071 793 ÷ 2 = 6 085 403 643 121 035 896 + 1;
  • 6 085 403 643 121 035 896 ÷ 2 = 3 042 701 821 560 517 948 + 0;
  • 3 042 701 821 560 517 948 ÷ 2 = 1 521 350 910 780 258 974 + 0;
  • 1 521 350 910 780 258 974 ÷ 2 = 760 675 455 390 129 487 + 0;
  • 760 675 455 390 129 487 ÷ 2 = 380 337 727 695 064 743 + 1;
  • 380 337 727 695 064 743 ÷ 2 = 190 168 863 847 532 371 + 1;
  • 190 168 863 847 532 371 ÷ 2 = 95 084 431 923 766 185 + 1;
  • 95 084 431 923 766 185 ÷ 2 = 47 542 215 961 883 092 + 1;
  • 47 542 215 961 883 092 ÷ 2 = 23 771 107 980 941 546 + 0;
  • 23 771 107 980 941 546 ÷ 2 = 11 885 553 990 470 773 + 0;
  • 11 885 553 990 470 773 ÷ 2 = 5 942 776 995 235 386 + 1;
  • 5 942 776 995 235 386 ÷ 2 = 2 971 388 497 617 693 + 0;
  • 2 971 388 497 617 693 ÷ 2 = 1 485 694 248 808 846 + 1;
  • 1 485 694 248 808 846 ÷ 2 = 742 847 124 404 423 + 0;
  • 742 847 124 404 423 ÷ 2 = 371 423 562 202 211 + 1;
  • 371 423 562 202 211 ÷ 2 = 185 711 781 101 105 + 1;
  • 185 711 781 101 105 ÷ 2 = 92 855 890 550 552 + 1;
  • 92 855 890 550 552 ÷ 2 = 46 427 945 275 276 + 0;
  • 46 427 945 275 276 ÷ 2 = 23 213 972 637 638 + 0;
  • 23 213 972 637 638 ÷ 2 = 11 606 986 318 819 + 0;
  • 11 606 986 318 819 ÷ 2 = 5 803 493 159 409 + 1;
  • 5 803 493 159 409 ÷ 2 = 2 901 746 579 704 + 1;
  • 2 901 746 579 704 ÷ 2 = 1 450 873 289 852 + 0;
  • 1 450 873 289 852 ÷ 2 = 725 436 644 926 + 0;
  • 725 436 644 926 ÷ 2 = 362 718 322 463 + 0;
  • 362 718 322 463 ÷ 2 = 181 359 161 231 + 1;
  • 181 359 161 231 ÷ 2 = 90 679 580 615 + 1;
  • 90 679 580 615 ÷ 2 = 45 339 790 307 + 1;
  • 45 339 790 307 ÷ 2 = 22 669 895 153 + 1;
  • 22 669 895 153 ÷ 2 = 11 334 947 576 + 1;
  • 11 334 947 576 ÷ 2 = 5 667 473 788 + 0;
  • 5 667 473 788 ÷ 2 = 2 833 736 894 + 0;
  • 2 833 736 894 ÷ 2 = 1 416 868 447 + 0;
  • 1 416 868 447 ÷ 2 = 708 434 223 + 1;
  • 708 434 223 ÷ 2 = 354 217 111 + 1;
  • 354 217 111 ÷ 2 = 177 108 555 + 1;
  • 177 108 555 ÷ 2 = 88 554 277 + 1;
  • 88 554 277 ÷ 2 = 44 277 138 + 1;
  • 44 277 138 ÷ 2 = 22 138 569 + 0;
  • 22 138 569 ÷ 2 = 11 069 284 + 1;
  • 11 069 284 ÷ 2 = 5 534 642 + 0;
  • 5 534 642 ÷ 2 = 2 767 321 + 0;
  • 2 767 321 ÷ 2 = 1 383 660 + 1;
  • 1 383 660 ÷ 2 = 691 830 + 0;
  • 691 830 ÷ 2 = 345 915 + 0;
  • 345 915 ÷ 2 = 172 957 + 1;
  • 172 957 ÷ 2 = 86 478 + 1;
  • 86 478 ÷ 2 = 43 239 + 0;
  • 43 239 ÷ 2 = 21 619 + 1;
  • 21 619 ÷ 2 = 10 809 + 1;
  • 10 809 ÷ 2 = 5 404 + 1;
  • 5 404 ÷ 2 = 2 702 + 0;
  • 2 702 ÷ 2 = 1 351 + 0;
  • 1 351 ÷ 2 = 675 + 1;
  • 675 ÷ 2 = 337 + 1;
  • 337 ÷ 2 = 168 + 1;
  • 168 ÷ 2 = 84 + 0;
  • 84 ÷ 2 = 42 + 0;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 006(10) =


1010 1000 1110 0111 0110 0100 1011 1110 0011 1110 0011 0001 1101 0100 1111 0001 1011 0001 0010 0111 1100 1111 1101 1010 1101 1000 0000 1010 0101 1000 1110 1100 0111 0010 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 179 positions to the left so that only one non zero digit remains to the left of it:


1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 006(10) =


1010 1000 1110 0111 0110 0100 1011 1110 0011 1110 0011 0001 1101 0100 1111 0001 1011 0001 0010 0111 1100 1111 1101 1010 1101 1000 0000 1010 0101 1000 1110 1100 0111 0010 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110(2) =


1010 1000 1110 0111 0110 0100 1011 1110 0011 1110 0011 0001 1101 0100 1111 0001 1011 0001 0010 0111 1100 1111 1101 1010 1101 1000 0000 1010 0101 1000 1110 1100 0111 0010 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110(2) × 20 =


1.0101 0001 1100 1110 1100 1001 0111 1100 0111 1100 0110 0011 1010 1001 1110 0011 0110 0010 0100 1111 1001 1111 1011 0101 1011 0000 0001 0100 1011 0001 1101 1000 1110 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 110(2) × 2179


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): 179


Mantissa (not normalized):
1.0101 0001 1100 1110 1100 1001 0111 1100 0111 1100 0110 0011 1010 1001 1110 0011 0110 0010 0100 1111 1001 1111 1011 0101 1011 0000 0001 0100 1011 0001 1101 1000 1110 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 110


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


179 + 2(11-1) - 1 =


(179 + 1 023)(10) =


1 202(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 202 ÷ 2 = 601 + 0;
  • 601 ÷ 2 = 300 + 1;
  • 300 ÷ 2 = 150 + 0;
  • 150 ÷ 2 = 75 + 0;
  • 75 ÷ 2 = 37 + 1;
  • 37 ÷ 2 = 18 + 1;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


1202(10) =


100 1011 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0101 0001 1100 1110 1100 1001 0111 1100 0111 1100 0110 0011 1010 100 1111 0001 1011 0001 0010 0111 1100 1111 1101 1010 1101 1000 0000 1010 0101 1000 1110 1100 0111 0010 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 =


0101 0001 1100 1110 1100 1001 0111 1100 0111 1100 0110 0011 1010


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 1011 0010


Mantissa (52 bits) =
0101 0001 1100 1110 1100 1001 0111 1100 0111 1100 0110 0011 1010


Number 1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 006 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point:
0 - 100 1011 0010 - 0101 0001 1100 1110 1100 1001 0111 1100 0111 1100 0110 0011 1010

(64 bits IEEE 754)

More operations of this kind:

1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 005 = ? ... 1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 007 = ?


Convert to 64 bit double precision IEEE 754 binary floating point standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes one bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

1 011 111 111 011 000 000 000 000 000 000 000 000 000 000 000 000 000 006 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:38 UTC (GMT)
100 000 100 101 000 000 000 999 999 999 999 999 999 999 999 999 999 999 999 968 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:38 UTC (GMT)
1 223.624 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:37 UTC (GMT)
11 000 000 110 110 000 000 000 000 000 026 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:37 UTC (GMT)
-23.53 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:37 UTC (GMT)
-17.373 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:36 UTC (GMT)
1 647 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:35 UTC (GMT)
4 645 458 617 586 155 521 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:33 UTC (GMT)
11 930 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:33 UTC (GMT)
0.428 571 6 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:33 UTC (GMT)
737 099.537 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:32 UTC (GMT)
-4 317 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:32 UTC (GMT)
-1 280.35 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:32 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100