Convert the Number 1 010 101 111 001 099 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 1 010 101 111 001 099(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 010 101 111 001 099 ÷ 2 = 505 050 555 500 549 + 1;
  • 505 050 555 500 549 ÷ 2 = 252 525 277 750 274 + 1;
  • 252 525 277 750 274 ÷ 2 = 126 262 638 875 137 + 0;
  • 126 262 638 875 137 ÷ 2 = 63 131 319 437 568 + 1;
  • 63 131 319 437 568 ÷ 2 = 31 565 659 718 784 + 0;
  • 31 565 659 718 784 ÷ 2 = 15 782 829 859 392 + 0;
  • 15 782 829 859 392 ÷ 2 = 7 891 414 929 696 + 0;
  • 7 891 414 929 696 ÷ 2 = 3 945 707 464 848 + 0;
  • 3 945 707 464 848 ÷ 2 = 1 972 853 732 424 + 0;
  • 1 972 853 732 424 ÷ 2 = 986 426 866 212 + 0;
  • 986 426 866 212 ÷ 2 = 493 213 433 106 + 0;
  • 493 213 433 106 ÷ 2 = 246 606 716 553 + 0;
  • 246 606 716 553 ÷ 2 = 123 303 358 276 + 1;
  • 123 303 358 276 ÷ 2 = 61 651 679 138 + 0;
  • 61 651 679 138 ÷ 2 = 30 825 839 569 + 0;
  • 30 825 839 569 ÷ 2 = 15 412 919 784 + 1;
  • 15 412 919 784 ÷ 2 = 7 706 459 892 + 0;
  • 7 706 459 892 ÷ 2 = 3 853 229 946 + 0;
  • 3 853 229 946 ÷ 2 = 1 926 614 973 + 0;
  • 1 926 614 973 ÷ 2 = 963 307 486 + 1;
  • 963 307 486 ÷ 2 = 481 653 743 + 0;
  • 481 653 743 ÷ 2 = 240 826 871 + 1;
  • 240 826 871 ÷ 2 = 120 413 435 + 1;
  • 120 413 435 ÷ 2 = 60 206 717 + 1;
  • 60 206 717 ÷ 2 = 30 103 358 + 1;
  • 30 103 358 ÷ 2 = 15 051 679 + 0;
  • 15 051 679 ÷ 2 = 7 525 839 + 1;
  • 7 525 839 ÷ 2 = 3 762 919 + 1;
  • 3 762 919 ÷ 2 = 1 881 459 + 1;
  • 1 881 459 ÷ 2 = 940 729 + 1;
  • 940 729 ÷ 2 = 470 364 + 1;
  • 470 364 ÷ 2 = 235 182 + 0;
  • 235 182 ÷ 2 = 117 591 + 0;
  • 117 591 ÷ 2 = 58 795 + 1;
  • 58 795 ÷ 2 = 29 397 + 1;
  • 29 397 ÷ 2 = 14 698 + 1;
  • 14 698 ÷ 2 = 7 349 + 0;
  • 7 349 ÷ 2 = 3 674 + 1;
  • 3 674 ÷ 2 = 1 837 + 0;
  • 1 837 ÷ 2 = 918 + 1;
  • 918 ÷ 2 = 459 + 0;
  • 459 ÷ 2 = 229 + 1;
  • 229 ÷ 2 = 114 + 1;
  • 114 ÷ 2 = 57 + 0;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 010 101 111 001 099(10) =


11 1001 0110 1010 1110 0111 1101 1110 1000 1001 0000 0000 1011(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 49 positions to the left, so that only one non zero digit remains to the left of it:


1 010 101 111 001 099(10) =


11 1001 0110 1010 1110 0111 1101 1110 1000 1001 0000 0000 1011(2) =


11 1001 0110 1010 1110 0111 1101 1110 1000 1001 0000 0000 1011(2) × 20 =


1.1100 1011 0101 0111 0011 1110 1111 0100 0100 1000 0000 0101 1(2) × 249


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 49


Mantissa (not normalized):
1.1100 1011 0101 0111 0011 1110 1111 0100 0100 1000 0000 0101 1


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


49 + 2(11-1) - 1 =


(49 + 1 023)(10) =


1 072(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 072 ÷ 2 = 536 + 0;
  • 536 ÷ 2 = 268 + 0;
  • 268 ÷ 2 = 134 + 0;
  • 134 ÷ 2 = 67 + 0;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1072(10) =


100 0011 0000(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 1 1001 0110 1010 1110 0111 1101 1110 1000 1001 0000 0000 1011 000 =


1100 1011 0101 0111 0011 1110 1111 0100 0100 1000 0000 0101 1000


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0011 0000


Mantissa (52 bits) =
1100 1011 0101 0111 0011 1110 1111 0100 0100 1000 0000 0101 1000


The base ten decimal number 1 010 101 111 001 099 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0011 0000 - 1100 1011 0101 0111 0011 1110 1111 0100 0100 1000 0000 0101 1000

(64 bits IEEE 754)

Number 1 010 101 111 001 098 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 1 010 101 111 001 100 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1 010 101 111 001 099 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:51 UTC (GMT)
Number -0.345 000 000 000 000 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:51 UTC (GMT)
Number 17 388 056 608 179 817 723 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:51 UTC (GMT)
Number 2 566 914 027 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:51 UTC (GMT)
Number 82 723 612 394 873 523.123 453 729 384 77 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:51 UTC (GMT)
Number 657 499 999 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 2 145 571 579.002 405 881 88 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 5.143 999 999 999 999 239 719 272 736 692 801 117 897 033 3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 11 011 000 036 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 90.899 999 999 999 991 473 482 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal