64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 10 100 110 100 000 000 000 000 000 000 000 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 10 100 110 100 000 000 000 000 000 000 000(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 100 110 100 000 000 000 000 000 000 000 ÷ 2 = 5 050 055 050 000 000 000 000 000 000 000 + 0;
  • 5 050 055 050 000 000 000 000 000 000 000 ÷ 2 = 2 525 027 525 000 000 000 000 000 000 000 + 0;
  • 2 525 027 525 000 000 000 000 000 000 000 ÷ 2 = 1 262 513 762 500 000 000 000 000 000 000 + 0;
  • 1 262 513 762 500 000 000 000 000 000 000 ÷ 2 = 631 256 881 250 000 000 000 000 000 000 + 0;
  • 631 256 881 250 000 000 000 000 000 000 ÷ 2 = 315 628 440 625 000 000 000 000 000 000 + 0;
  • 315 628 440 625 000 000 000 000 000 000 ÷ 2 = 157 814 220 312 500 000 000 000 000 000 + 0;
  • 157 814 220 312 500 000 000 000 000 000 ÷ 2 = 78 907 110 156 250 000 000 000 000 000 + 0;
  • 78 907 110 156 250 000 000 000 000 000 ÷ 2 = 39 453 555 078 125 000 000 000 000 000 + 0;
  • 39 453 555 078 125 000 000 000 000 000 ÷ 2 = 19 726 777 539 062 500 000 000 000 000 + 0;
  • 19 726 777 539 062 500 000 000 000 000 ÷ 2 = 9 863 388 769 531 250 000 000 000 000 + 0;
  • 9 863 388 769 531 250 000 000 000 000 ÷ 2 = 4 931 694 384 765 625 000 000 000 000 + 0;
  • 4 931 694 384 765 625 000 000 000 000 ÷ 2 = 2 465 847 192 382 812 500 000 000 000 + 0;
  • 2 465 847 192 382 812 500 000 000 000 ÷ 2 = 1 232 923 596 191 406 250 000 000 000 + 0;
  • 1 232 923 596 191 406 250 000 000 000 ÷ 2 = 616 461 798 095 703 125 000 000 000 + 0;
  • 616 461 798 095 703 125 000 000 000 ÷ 2 = 308 230 899 047 851 562 500 000 000 + 0;
  • 308 230 899 047 851 562 500 000 000 ÷ 2 = 154 115 449 523 925 781 250 000 000 + 0;
  • 154 115 449 523 925 781 250 000 000 ÷ 2 = 77 057 724 761 962 890 625 000 000 + 0;
  • 77 057 724 761 962 890 625 000 000 ÷ 2 = 38 528 862 380 981 445 312 500 000 + 0;
  • 38 528 862 380 981 445 312 500 000 ÷ 2 = 19 264 431 190 490 722 656 250 000 + 0;
  • 19 264 431 190 490 722 656 250 000 ÷ 2 = 9 632 215 595 245 361 328 125 000 + 0;
  • 9 632 215 595 245 361 328 125 000 ÷ 2 = 4 816 107 797 622 680 664 062 500 + 0;
  • 4 816 107 797 622 680 664 062 500 ÷ 2 = 2 408 053 898 811 340 332 031 250 + 0;
  • 2 408 053 898 811 340 332 031 250 ÷ 2 = 1 204 026 949 405 670 166 015 625 + 0;
  • 1 204 026 949 405 670 166 015 625 ÷ 2 = 602 013 474 702 835 083 007 812 + 1;
  • 602 013 474 702 835 083 007 812 ÷ 2 = 301 006 737 351 417 541 503 906 + 0;
  • 301 006 737 351 417 541 503 906 ÷ 2 = 150 503 368 675 708 770 751 953 + 0;
  • 150 503 368 675 708 770 751 953 ÷ 2 = 75 251 684 337 854 385 375 976 + 1;
  • 75 251 684 337 854 385 375 976 ÷ 2 = 37 625 842 168 927 192 687 988 + 0;
  • 37 625 842 168 927 192 687 988 ÷ 2 = 18 812 921 084 463 596 343 994 + 0;
  • 18 812 921 084 463 596 343 994 ÷ 2 = 9 406 460 542 231 798 171 997 + 0;
  • 9 406 460 542 231 798 171 997 ÷ 2 = 4 703 230 271 115 899 085 998 + 1;
  • 4 703 230 271 115 899 085 998 ÷ 2 = 2 351 615 135 557 949 542 999 + 0;
  • 2 351 615 135 557 949 542 999 ÷ 2 = 1 175 807 567 778 974 771 499 + 1;
  • 1 175 807 567 778 974 771 499 ÷ 2 = 587 903 783 889 487 385 749 + 1;
  • 587 903 783 889 487 385 749 ÷ 2 = 293 951 891 944 743 692 874 + 1;
  • 293 951 891 944 743 692 874 ÷ 2 = 146 975 945 972 371 846 437 + 0;
  • 146 975 945 972 371 846 437 ÷ 2 = 73 487 972 986 185 923 218 + 1;
  • 73 487 972 986 185 923 218 ÷ 2 = 36 743 986 493 092 961 609 + 0;
  • 36 743 986 493 092 961 609 ÷ 2 = 18 371 993 246 546 480 804 + 1;
  • 18 371 993 246 546 480 804 ÷ 2 = 9 185 996 623 273 240 402 + 0;
  • 9 185 996 623 273 240 402 ÷ 2 = 4 592 998 311 636 620 201 + 0;
  • 4 592 998 311 636 620 201 ÷ 2 = 2 296 499 155 818 310 100 + 1;
  • 2 296 499 155 818 310 100 ÷ 2 = 1 148 249 577 909 155 050 + 0;
  • 1 148 249 577 909 155 050 ÷ 2 = 574 124 788 954 577 525 + 0;
  • 574 124 788 954 577 525 ÷ 2 = 287 062 394 477 288 762 + 1;
  • 287 062 394 477 288 762 ÷ 2 = 143 531 197 238 644 381 + 0;
  • 143 531 197 238 644 381 ÷ 2 = 71 765 598 619 322 190 + 1;
  • 71 765 598 619 322 190 ÷ 2 = 35 882 799 309 661 095 + 0;
  • 35 882 799 309 661 095 ÷ 2 = 17 941 399 654 830 547 + 1;
  • 17 941 399 654 830 547 ÷ 2 = 8 970 699 827 415 273 + 1;
  • 8 970 699 827 415 273 ÷ 2 = 4 485 349 913 707 636 + 1;
  • 4 485 349 913 707 636 ÷ 2 = 2 242 674 956 853 818 + 0;
  • 2 242 674 956 853 818 ÷ 2 = 1 121 337 478 426 909 + 0;
  • 1 121 337 478 426 909 ÷ 2 = 560 668 739 213 454 + 1;
  • 560 668 739 213 454 ÷ 2 = 280 334 369 606 727 + 0;
  • 280 334 369 606 727 ÷ 2 = 140 167 184 803 363 + 1;
  • 140 167 184 803 363 ÷ 2 = 70 083 592 401 681 + 1;
  • 70 083 592 401 681 ÷ 2 = 35 041 796 200 840 + 1;
  • 35 041 796 200 840 ÷ 2 = 17 520 898 100 420 + 0;
  • 17 520 898 100 420 ÷ 2 = 8 760 449 050 210 + 0;
  • 8 760 449 050 210 ÷ 2 = 4 380 224 525 105 + 0;
  • 4 380 224 525 105 ÷ 2 = 2 190 112 262 552 + 1;
  • 2 190 112 262 552 ÷ 2 = 1 095 056 131 276 + 0;
  • 1 095 056 131 276 ÷ 2 = 547 528 065 638 + 0;
  • 547 528 065 638 ÷ 2 = 273 764 032 819 + 0;
  • 273 764 032 819 ÷ 2 = 136 882 016 409 + 1;
  • 136 882 016 409 ÷ 2 = 68 441 008 204 + 1;
  • 68 441 008 204 ÷ 2 = 34 220 504 102 + 0;
  • 34 220 504 102 ÷ 2 = 17 110 252 051 + 0;
  • 17 110 252 051 ÷ 2 = 8 555 126 025 + 1;
  • 8 555 126 025 ÷ 2 = 4 277 563 012 + 1;
  • 4 277 563 012 ÷ 2 = 2 138 781 506 + 0;
  • 2 138 781 506 ÷ 2 = 1 069 390 753 + 0;
  • 1 069 390 753 ÷ 2 = 534 695 376 + 1;
  • 534 695 376 ÷ 2 = 267 347 688 + 0;
  • 267 347 688 ÷ 2 = 133 673 844 + 0;
  • 133 673 844 ÷ 2 = 66 836 922 + 0;
  • 66 836 922 ÷ 2 = 33 418 461 + 0;
  • 33 418 461 ÷ 2 = 16 709 230 + 1;
  • 16 709 230 ÷ 2 = 8 354 615 + 0;
  • 8 354 615 ÷ 2 = 4 177 307 + 1;
  • 4 177 307 ÷ 2 = 2 088 653 + 1;
  • 2 088 653 ÷ 2 = 1 044 326 + 1;
  • 1 044 326 ÷ 2 = 522 163 + 0;
  • 522 163 ÷ 2 = 261 081 + 1;
  • 261 081 ÷ 2 = 130 540 + 1;
  • 130 540 ÷ 2 = 65 270 + 0;
  • 65 270 ÷ 2 = 32 635 + 0;
  • 32 635 ÷ 2 = 16 317 + 1;
  • 16 317 ÷ 2 = 8 158 + 1;
  • 8 158 ÷ 2 = 4 079 + 0;
  • 4 079 ÷ 2 = 2 039 + 1;
  • 2 039 ÷ 2 = 1 019 + 1;
  • 1 019 ÷ 2 = 509 + 1;
  • 509 ÷ 2 = 254 + 1;
  • 254 ÷ 2 = 127 + 0;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 100 110 100 000 000 000 000 000 000 000(10) =


111 1111 0111 1011 0011 0111 0100 0010 0110 0110 0010 0011 1010 0111 0101 0010 0101 0111 0100 0100 1000 0000 0000 0000 0000 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 102 positions to the left, so that only one non zero digit remains to the left of it:


10 100 110 100 000 000 000 000 000 000 000(10) =


111 1111 0111 1011 0011 0111 0100 0010 0110 0110 0010 0011 1010 0111 0101 0010 0101 0111 0100 0100 1000 0000 0000 0000 0000 0000(2) =


111 1111 0111 1011 0011 0111 0100 0010 0110 0110 0010 0011 1010 0111 0101 0010 0101 0111 0100 0100 1000 0000 0000 0000 0000 0000(2) × 20 =


1.1111 1101 1110 1100 1101 1101 0000 1001 1001 1000 1000 1110 1001 1101 0100 1001 0101 1101 0001 0010 0000 0000 0000 0000 0000 00(2) × 2102


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 102


Mantissa (not normalized):
1.1111 1101 1110 1100 1101 1101 0000 1001 1001 1000 1000 1110 1001 1101 0100 1001 0101 1101 0001 0010 0000 0000 0000 0000 0000 00


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


102 + 2(11-1) - 1 =


(102 + 1 023)(10) =


1 125(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 125 ÷ 2 = 562 + 1;
  • 562 ÷ 2 = 281 + 0;
  • 281 ÷ 2 = 140 + 1;
  • 140 ÷ 2 = 70 + 0;
  • 70 ÷ 2 = 35 + 0;
  • 35 ÷ 2 = 17 + 1;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1125(10) =


100 0110 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1111 1101 1110 1100 1101 1101 0000 1001 1001 1000 1000 1110 1001 11 0101 0010 0101 0111 0100 0100 1000 0000 0000 0000 0000 0000 =


1111 1101 1110 1100 1101 1101 0000 1001 1001 1000 1000 1110 1001


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 0110 0101


Mantissa (52 bits) =
1111 1101 1110 1100 1101 1101 0000 1001 1001 1000 1000 1110 1001


The base ten decimal number 10 100 110 100 000 000 000 000 000 000 000 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 0110 0101 - 1111 1101 1110 1100 1101 1101 0000 1001 1001 1000 1000 1110 1001

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 18.5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:56 UTC (GMT)
Number 21.5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number 211 220 152 057 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number 2.745 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number -21 770 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number -5 318 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number 0.032 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number -53 307 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number 72 057 594 037 927 940 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
Number 24 125 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 15:55 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100