Decimal to 64 Bit IEEE 754 Binary: Convert Number 10 000 011 001 101 110 111 100 111 011 011 010 100 111 010 001 010 040 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 10 000 011 001 101 110 111 100 111 011 011 010 100 111 010 001 010 040(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation standard (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 000 011 001 101 110 111 100 111 011 011 010 100 111 010 001 010 040 ÷ 2 = 5 000 005 500 550 555 055 550 055 505 505 505 050 055 505 000 505 020 + 0;
  • 5 000 005 500 550 555 055 550 055 505 505 505 050 055 505 000 505 020 ÷ 2 = 2 500 002 750 275 277 527 775 027 752 752 752 525 027 752 500 252 510 + 0;
  • 2 500 002 750 275 277 527 775 027 752 752 752 525 027 752 500 252 510 ÷ 2 = 1 250 001 375 137 638 763 887 513 876 376 376 262 513 876 250 126 255 + 0;
  • 1 250 001 375 137 638 763 887 513 876 376 376 262 513 876 250 126 255 ÷ 2 = 625 000 687 568 819 381 943 756 938 188 188 131 256 938 125 063 127 + 1;
  • 625 000 687 568 819 381 943 756 938 188 188 131 256 938 125 063 127 ÷ 2 = 312 500 343 784 409 690 971 878 469 094 094 065 628 469 062 531 563 + 1;
  • 312 500 343 784 409 690 971 878 469 094 094 065 628 469 062 531 563 ÷ 2 = 156 250 171 892 204 845 485 939 234 547 047 032 814 234 531 265 781 + 1;
  • 156 250 171 892 204 845 485 939 234 547 047 032 814 234 531 265 781 ÷ 2 = 78 125 085 946 102 422 742 969 617 273 523 516 407 117 265 632 890 + 1;
  • 78 125 085 946 102 422 742 969 617 273 523 516 407 117 265 632 890 ÷ 2 = 39 062 542 973 051 211 371 484 808 636 761 758 203 558 632 816 445 + 0;
  • 39 062 542 973 051 211 371 484 808 636 761 758 203 558 632 816 445 ÷ 2 = 19 531 271 486 525 605 685 742 404 318 380 879 101 779 316 408 222 + 1;
  • 19 531 271 486 525 605 685 742 404 318 380 879 101 779 316 408 222 ÷ 2 = 9 765 635 743 262 802 842 871 202 159 190 439 550 889 658 204 111 + 0;
  • 9 765 635 743 262 802 842 871 202 159 190 439 550 889 658 204 111 ÷ 2 = 4 882 817 871 631 401 421 435 601 079 595 219 775 444 829 102 055 + 1;
  • 4 882 817 871 631 401 421 435 601 079 595 219 775 444 829 102 055 ÷ 2 = 2 441 408 935 815 700 710 717 800 539 797 609 887 722 414 551 027 + 1;
  • 2 441 408 935 815 700 710 717 800 539 797 609 887 722 414 551 027 ÷ 2 = 1 220 704 467 907 850 355 358 900 269 898 804 943 861 207 275 513 + 1;
  • 1 220 704 467 907 850 355 358 900 269 898 804 943 861 207 275 513 ÷ 2 = 610 352 233 953 925 177 679 450 134 949 402 471 930 603 637 756 + 1;
  • 610 352 233 953 925 177 679 450 134 949 402 471 930 603 637 756 ÷ 2 = 305 176 116 976 962 588 839 725 067 474 701 235 965 301 818 878 + 0;
  • 305 176 116 976 962 588 839 725 067 474 701 235 965 301 818 878 ÷ 2 = 152 588 058 488 481 294 419 862 533 737 350 617 982 650 909 439 + 0;
  • 152 588 058 488 481 294 419 862 533 737 350 617 982 650 909 439 ÷ 2 = 76 294 029 244 240 647 209 931 266 868 675 308 991 325 454 719 + 1;
  • 76 294 029 244 240 647 209 931 266 868 675 308 991 325 454 719 ÷ 2 = 38 147 014 622 120 323 604 965 633 434 337 654 495 662 727 359 + 1;
  • 38 147 014 622 120 323 604 965 633 434 337 654 495 662 727 359 ÷ 2 = 19 073 507 311 060 161 802 482 816 717 168 827 247 831 363 679 + 1;
  • 19 073 507 311 060 161 802 482 816 717 168 827 247 831 363 679 ÷ 2 = 9 536 753 655 530 080 901 241 408 358 584 413 623 915 681 839 + 1;
  • 9 536 753 655 530 080 901 241 408 358 584 413 623 915 681 839 ÷ 2 = 4 768 376 827 765 040 450 620 704 179 292 206 811 957 840 919 + 1;
  • 4 768 376 827 765 040 450 620 704 179 292 206 811 957 840 919 ÷ 2 = 2 384 188 413 882 520 225 310 352 089 646 103 405 978 920 459 + 1;
  • 2 384 188 413 882 520 225 310 352 089 646 103 405 978 920 459 ÷ 2 = 1 192 094 206 941 260 112 655 176 044 823 051 702 989 460 229 + 1;
  • 1 192 094 206 941 260 112 655 176 044 823 051 702 989 460 229 ÷ 2 = 596 047 103 470 630 056 327 588 022 411 525 851 494 730 114 + 1;
  • 596 047 103 470 630 056 327 588 022 411 525 851 494 730 114 ÷ 2 = 298 023 551 735 315 028 163 794 011 205 762 925 747 365 057 + 0;
  • 298 023 551 735 315 028 163 794 011 205 762 925 747 365 057 ÷ 2 = 149 011 775 867 657 514 081 897 005 602 881 462 873 682 528 + 1;
  • 149 011 775 867 657 514 081 897 005 602 881 462 873 682 528 ÷ 2 = 74 505 887 933 828 757 040 948 502 801 440 731 436 841 264 + 0;
  • 74 505 887 933 828 757 040 948 502 801 440 731 436 841 264 ÷ 2 = 37 252 943 966 914 378 520 474 251 400 720 365 718 420 632 + 0;
  • 37 252 943 966 914 378 520 474 251 400 720 365 718 420 632 ÷ 2 = 18 626 471 983 457 189 260 237 125 700 360 182 859 210 316 + 0;
  • 18 626 471 983 457 189 260 237 125 700 360 182 859 210 316 ÷ 2 = 9 313 235 991 728 594 630 118 562 850 180 091 429 605 158 + 0;
  • 9 313 235 991 728 594 630 118 562 850 180 091 429 605 158 ÷ 2 = 4 656 617 995 864 297 315 059 281 425 090 045 714 802 579 + 0;
  • 4 656 617 995 864 297 315 059 281 425 090 045 714 802 579 ÷ 2 = 2 328 308 997 932 148 657 529 640 712 545 022 857 401 289 + 1;
  • 2 328 308 997 932 148 657 529 640 712 545 022 857 401 289 ÷ 2 = 1 164 154 498 966 074 328 764 820 356 272 511 428 700 644 + 1;
  • 1 164 154 498 966 074 328 764 820 356 272 511 428 700 644 ÷ 2 = 582 077 249 483 037 164 382 410 178 136 255 714 350 322 + 0;
  • 582 077 249 483 037 164 382 410 178 136 255 714 350 322 ÷ 2 = 291 038 624 741 518 582 191 205 089 068 127 857 175 161 + 0;
  • 291 038 624 741 518 582 191 205 089 068 127 857 175 161 ÷ 2 = 145 519 312 370 759 291 095 602 544 534 063 928 587 580 + 1;
  • 145 519 312 370 759 291 095 602 544 534 063 928 587 580 ÷ 2 = 72 759 656 185 379 645 547 801 272 267 031 964 293 790 + 0;
  • 72 759 656 185 379 645 547 801 272 267 031 964 293 790 ÷ 2 = 36 379 828 092 689 822 773 900 636 133 515 982 146 895 + 0;
  • 36 379 828 092 689 822 773 900 636 133 515 982 146 895 ÷ 2 = 18 189 914 046 344 911 386 950 318 066 757 991 073 447 + 1;
  • 18 189 914 046 344 911 386 950 318 066 757 991 073 447 ÷ 2 = 9 094 957 023 172 455 693 475 159 033 378 995 536 723 + 1;
  • 9 094 957 023 172 455 693 475 159 033 378 995 536 723 ÷ 2 = 4 547 478 511 586 227 846 737 579 516 689 497 768 361 + 1;
  • 4 547 478 511 586 227 846 737 579 516 689 497 768 361 ÷ 2 = 2 273 739 255 793 113 923 368 789 758 344 748 884 180 + 1;
  • 2 273 739 255 793 113 923 368 789 758 344 748 884 180 ÷ 2 = 1 136 869 627 896 556 961 684 394 879 172 374 442 090 + 0;
  • 1 136 869 627 896 556 961 684 394 879 172 374 442 090 ÷ 2 = 568 434 813 948 278 480 842 197 439 586 187 221 045 + 0;
  • 568 434 813 948 278 480 842 197 439 586 187 221 045 ÷ 2 = 284 217 406 974 139 240 421 098 719 793 093 610 522 + 1;
  • 284 217 406 974 139 240 421 098 719 793 093 610 522 ÷ 2 = 142 108 703 487 069 620 210 549 359 896 546 805 261 + 0;
  • 142 108 703 487 069 620 210 549 359 896 546 805 261 ÷ 2 = 71 054 351 743 534 810 105 274 679 948 273 402 630 + 1;
  • 71 054 351 743 534 810 105 274 679 948 273 402 630 ÷ 2 = 35 527 175 871 767 405 052 637 339 974 136 701 315 + 0;
  • 35 527 175 871 767 405 052 637 339 974 136 701 315 ÷ 2 = 17 763 587 935 883 702 526 318 669 987 068 350 657 + 1;
  • 17 763 587 935 883 702 526 318 669 987 068 350 657 ÷ 2 = 8 881 793 967 941 851 263 159 334 993 534 175 328 + 1;
  • 8 881 793 967 941 851 263 159 334 993 534 175 328 ÷ 2 = 4 440 896 983 970 925 631 579 667 496 767 087 664 + 0;
  • 4 440 896 983 970 925 631 579 667 496 767 087 664 ÷ 2 = 2 220 448 491 985 462 815 789 833 748 383 543 832 + 0;
  • 2 220 448 491 985 462 815 789 833 748 383 543 832 ÷ 2 = 1 110 224 245 992 731 407 894 916 874 191 771 916 + 0;
  • 1 110 224 245 992 731 407 894 916 874 191 771 916 ÷ 2 = 555 112 122 996 365 703 947 458 437 095 885 958 + 0;
  • 555 112 122 996 365 703 947 458 437 095 885 958 ÷ 2 = 277 556 061 498 182 851 973 729 218 547 942 979 + 0;
  • 277 556 061 498 182 851 973 729 218 547 942 979 ÷ 2 = 138 778 030 749 091 425 986 864 609 273 971 489 + 1;
  • 138 778 030 749 091 425 986 864 609 273 971 489 ÷ 2 = 69 389 015 374 545 712 993 432 304 636 985 744 + 1;
  • 69 389 015 374 545 712 993 432 304 636 985 744 ÷ 2 = 34 694 507 687 272 856 496 716 152 318 492 872 + 0;
  • 34 694 507 687 272 856 496 716 152 318 492 872 ÷ 2 = 17 347 253 843 636 428 248 358 076 159 246 436 + 0;
  • 17 347 253 843 636 428 248 358 076 159 246 436 ÷ 2 = 8 673 626 921 818 214 124 179 038 079 623 218 + 0;
  • 8 673 626 921 818 214 124 179 038 079 623 218 ÷ 2 = 4 336 813 460 909 107 062 089 519 039 811 609 + 0;
  • 4 336 813 460 909 107 062 089 519 039 811 609 ÷ 2 = 2 168 406 730 454 553 531 044 759 519 905 804 + 1;
  • 2 168 406 730 454 553 531 044 759 519 905 804 ÷ 2 = 1 084 203 365 227 276 765 522 379 759 952 902 + 0;
  • 1 084 203 365 227 276 765 522 379 759 952 902 ÷ 2 = 542 101 682 613 638 382 761 189 879 976 451 + 0;
  • 542 101 682 613 638 382 761 189 879 976 451 ÷ 2 = 271 050 841 306 819 191 380 594 939 988 225 + 1;
  • 271 050 841 306 819 191 380 594 939 988 225 ÷ 2 = 135 525 420 653 409 595 690 297 469 994 112 + 1;
  • 135 525 420 653 409 595 690 297 469 994 112 ÷ 2 = 67 762 710 326 704 797 845 148 734 997 056 + 0;
  • 67 762 710 326 704 797 845 148 734 997 056 ÷ 2 = 33 881 355 163 352 398 922 574 367 498 528 + 0;
  • 33 881 355 163 352 398 922 574 367 498 528 ÷ 2 = 16 940 677 581 676 199 461 287 183 749 264 + 0;
  • 16 940 677 581 676 199 461 287 183 749 264 ÷ 2 = 8 470 338 790 838 099 730 643 591 874 632 + 0;
  • 8 470 338 790 838 099 730 643 591 874 632 ÷ 2 = 4 235 169 395 419 049 865 321 795 937 316 + 0;
  • 4 235 169 395 419 049 865 321 795 937 316 ÷ 2 = 2 117 584 697 709 524 932 660 897 968 658 + 0;
  • 2 117 584 697 709 524 932 660 897 968 658 ÷ 2 = 1 058 792 348 854 762 466 330 448 984 329 + 0;
  • 1 058 792 348 854 762 466 330 448 984 329 ÷ 2 = 529 396 174 427 381 233 165 224 492 164 + 1;
  • 529 396 174 427 381 233 165 224 492 164 ÷ 2 = 264 698 087 213 690 616 582 612 246 082 + 0;
  • 264 698 087 213 690 616 582 612 246 082 ÷ 2 = 132 349 043 606 845 308 291 306 123 041 + 0;
  • 132 349 043 606 845 308 291 306 123 041 ÷ 2 = 66 174 521 803 422 654 145 653 061 520 + 1;
  • 66 174 521 803 422 654 145 653 061 520 ÷ 2 = 33 087 260 901 711 327 072 826 530 760 + 0;
  • 33 087 260 901 711 327 072 826 530 760 ÷ 2 = 16 543 630 450 855 663 536 413 265 380 + 0;
  • 16 543 630 450 855 663 536 413 265 380 ÷ 2 = 8 271 815 225 427 831 768 206 632 690 + 0;
  • 8 271 815 225 427 831 768 206 632 690 ÷ 2 = 4 135 907 612 713 915 884 103 316 345 + 0;
  • 4 135 907 612 713 915 884 103 316 345 ÷ 2 = 2 067 953 806 356 957 942 051 658 172 + 1;
  • 2 067 953 806 356 957 942 051 658 172 ÷ 2 = 1 033 976 903 178 478 971 025 829 086 + 0;
  • 1 033 976 903 178 478 971 025 829 086 ÷ 2 = 516 988 451 589 239 485 512 914 543 + 0;
  • 516 988 451 589 239 485 512 914 543 ÷ 2 = 258 494 225 794 619 742 756 457 271 + 1;
  • 258 494 225 794 619 742 756 457 271 ÷ 2 = 129 247 112 897 309 871 378 228 635 + 1;
  • 129 247 112 897 309 871 378 228 635 ÷ 2 = 64 623 556 448 654 935 689 114 317 + 1;
  • 64 623 556 448 654 935 689 114 317 ÷ 2 = 32 311 778 224 327 467 844 557 158 + 1;
  • 32 311 778 224 327 467 844 557 158 ÷ 2 = 16 155 889 112 163 733 922 278 579 + 0;
  • 16 155 889 112 163 733 922 278 579 ÷ 2 = 8 077 944 556 081 866 961 139 289 + 1;
  • 8 077 944 556 081 866 961 139 289 ÷ 2 = 4 038 972 278 040 933 480 569 644 + 1;
  • 4 038 972 278 040 933 480 569 644 ÷ 2 = 2 019 486 139 020 466 740 284 822 + 0;
  • 2 019 486 139 020 466 740 284 822 ÷ 2 = 1 009 743 069 510 233 370 142 411 + 0;
  • 1 009 743 069 510 233 370 142 411 ÷ 2 = 504 871 534 755 116 685 071 205 + 1;
  • 504 871 534 755 116 685 071 205 ÷ 2 = 252 435 767 377 558 342 535 602 + 1;
  • 252 435 767 377 558 342 535 602 ÷ 2 = 126 217 883 688 779 171 267 801 + 0;
  • 126 217 883 688 779 171 267 801 ÷ 2 = 63 108 941 844 389 585 633 900 + 1;
  • 63 108 941 844 389 585 633 900 ÷ 2 = 31 554 470 922 194 792 816 950 + 0;
  • 31 554 470 922 194 792 816 950 ÷ 2 = 15 777 235 461 097 396 408 475 + 0;
  • 15 777 235 461 097 396 408 475 ÷ 2 = 7 888 617 730 548 698 204 237 + 1;
  • 7 888 617 730 548 698 204 237 ÷ 2 = 3 944 308 865 274 349 102 118 + 1;
  • 3 944 308 865 274 349 102 118 ÷ 2 = 1 972 154 432 637 174 551 059 + 0;
  • 1 972 154 432 637 174 551 059 ÷ 2 = 986 077 216 318 587 275 529 + 1;
  • 986 077 216 318 587 275 529 ÷ 2 = 493 038 608 159 293 637 764 + 1;
  • 493 038 608 159 293 637 764 ÷ 2 = 246 519 304 079 646 818 882 + 0;
  • 246 519 304 079 646 818 882 ÷ 2 = 123 259 652 039 823 409 441 + 0;
  • 123 259 652 039 823 409 441 ÷ 2 = 61 629 826 019 911 704 720 + 1;
  • 61 629 826 019 911 704 720 ÷ 2 = 30 814 913 009 955 852 360 + 0;
  • 30 814 913 009 955 852 360 ÷ 2 = 15 407 456 504 977 926 180 + 0;
  • 15 407 456 504 977 926 180 ÷ 2 = 7 703 728 252 488 963 090 + 0;
  • 7 703 728 252 488 963 090 ÷ 2 = 3 851 864 126 244 481 545 + 0;
  • 3 851 864 126 244 481 545 ÷ 2 = 1 925 932 063 122 240 772 + 1;
  • 1 925 932 063 122 240 772 ÷ 2 = 962 966 031 561 120 386 + 0;
  • 962 966 031 561 120 386 ÷ 2 = 481 483 015 780 560 193 + 0;
  • 481 483 015 780 560 193 ÷ 2 = 240 741 507 890 280 096 + 1;
  • 240 741 507 890 280 096 ÷ 2 = 120 370 753 945 140 048 + 0;
  • 120 370 753 945 140 048 ÷ 2 = 60 185 376 972 570 024 + 0;
  • 60 185 376 972 570 024 ÷ 2 = 30 092 688 486 285 012 + 0;
  • 30 092 688 486 285 012 ÷ 2 = 15 046 344 243 142 506 + 0;
  • 15 046 344 243 142 506 ÷ 2 = 7 523 172 121 571 253 + 0;
  • 7 523 172 121 571 253 ÷ 2 = 3 761 586 060 785 626 + 1;
  • 3 761 586 060 785 626 ÷ 2 = 1 880 793 030 392 813 + 0;
  • 1 880 793 030 392 813 ÷ 2 = 940 396 515 196 406 + 1;
  • 940 396 515 196 406 ÷ 2 = 470 198 257 598 203 + 0;
  • 470 198 257 598 203 ÷ 2 = 235 099 128 799 101 + 1;
  • 235 099 128 799 101 ÷ 2 = 117 549 564 399 550 + 1;
  • 117 549 564 399 550 ÷ 2 = 58 774 782 199 775 + 0;
  • 58 774 782 199 775 ÷ 2 = 29 387 391 099 887 + 1;
  • 29 387 391 099 887 ÷ 2 = 14 693 695 549 943 + 1;
  • 14 693 695 549 943 ÷ 2 = 7 346 847 774 971 + 1;
  • 7 346 847 774 971 ÷ 2 = 3 673 423 887 485 + 1;
  • 3 673 423 887 485 ÷ 2 = 1 836 711 943 742 + 1;
  • 1 836 711 943 742 ÷ 2 = 918 355 971 871 + 0;
  • 918 355 971 871 ÷ 2 = 459 177 985 935 + 1;
  • 459 177 985 935 ÷ 2 = 229 588 992 967 + 1;
  • 229 588 992 967 ÷ 2 = 114 794 496 483 + 1;
  • 114 794 496 483 ÷ 2 = 57 397 248 241 + 1;
  • 57 397 248 241 ÷ 2 = 28 698 624 120 + 1;
  • 28 698 624 120 ÷ 2 = 14 349 312 060 + 0;
  • 14 349 312 060 ÷ 2 = 7 174 656 030 + 0;
  • 7 174 656 030 ÷ 2 = 3 587 328 015 + 0;
  • 3 587 328 015 ÷ 2 = 1 793 664 007 + 1;
  • 1 793 664 007 ÷ 2 = 896 832 003 + 1;
  • 896 832 003 ÷ 2 = 448 416 001 + 1;
  • 448 416 001 ÷ 2 = 224 208 000 + 1;
  • 224 208 000 ÷ 2 = 112 104 000 + 0;
  • 112 104 000 ÷ 2 = 56 052 000 + 0;
  • 56 052 000 ÷ 2 = 28 026 000 + 0;
  • 28 026 000 ÷ 2 = 14 013 000 + 0;
  • 14 013 000 ÷ 2 = 7 006 500 + 0;
  • 7 006 500 ÷ 2 = 3 503 250 + 0;
  • 3 503 250 ÷ 2 = 1 751 625 + 0;
  • 1 751 625 ÷ 2 = 875 812 + 1;
  • 875 812 ÷ 2 = 437 906 + 0;
  • 437 906 ÷ 2 = 218 953 + 0;
  • 218 953 ÷ 2 = 109 476 + 1;
  • 109 476 ÷ 2 = 54 738 + 0;
  • 54 738 ÷ 2 = 27 369 + 0;
  • 27 369 ÷ 2 = 13 684 + 1;
  • 13 684 ÷ 2 = 6 842 + 0;
  • 6 842 ÷ 2 = 3 421 + 0;
  • 3 421 ÷ 2 = 1 710 + 1;
  • 1 710 ÷ 2 = 855 + 0;
  • 855 ÷ 2 = 427 + 1;
  • 427 ÷ 2 = 213 + 1;
  • 213 ÷ 2 = 106 + 1;
  • 106 ÷ 2 = 53 + 0;
  • 53 ÷ 2 = 26 + 1;
  • 26 ÷ 2 = 13 + 0;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

10 000 011 001 101 110 111 100 111 011 011 010 100 111 010 001 010 040(10) =


1 1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101 0000 0100 1000 0100 1101 1001 0110 0110 1111 0010 0001 0010 0000 0011 0010 0001 1000 0011 0101 0011 1100 1001 1000 0010 1111 1111 0011 1101 0111 1000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 172 positions to the left, so that only one non zero digit remains to the left of it:


10 000 011 001 101 110 111 100 111 011 011 010 100 111 010 001 010 040(10) =


1 1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101 0000 0100 1000 0100 1101 1001 0110 0110 1111 0010 0001 0010 0000 0011 0010 0001 1000 0011 0101 0011 1100 1001 1000 0010 1111 1111 0011 1101 0111 1000(2) =


1 1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101 0000 0100 1000 0100 1101 1001 0110 0110 1111 0010 0001 0010 0000 0011 0010 0001 1000 0011 0101 0011 1100 1001 1000 0010 1111 1111 0011 1101 0111 1000(2) × 20 =


1.1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101 0000 0100 1000 0100 1101 1001 0110 0110 1111 0010 0001 0010 0000 0011 0010 0001 1000 0011 0101 0011 1100 1001 1000 0010 1111 1111 0011 1101 0111 1000(2) × 2172


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 172


Mantissa (not normalized):
1.1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101 0000 0100 1000 0100 1101 1001 0110 0110 1111 0010 0001 0010 0000 0011 0010 0001 1000 0011 0101 0011 1100 1001 1000 0010 1111 1111 0011 1101 0111 1000


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


172 + 2(11-1) - 1 =


(172 + 1 023)(10) =


1 195(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 195 ÷ 2 = 597 + 1;
  • 597 ÷ 2 = 298 + 1;
  • 298 ÷ 2 = 149 + 0;
  • 149 ÷ 2 = 74 + 1;
  • 74 ÷ 2 = 37 + 0;
  • 37 ÷ 2 = 18 + 1;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1195(10) =


100 1010 1011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101 0000 0100 1000 0100 1101 1001 0110 0110 1111 0010 0001 0010 0000 0011 0010 0001 1000 0011 0101 0011 1100 1001 1000 0010 1111 1111 0011 1101 0111 1000 =


1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 1010 1011


Mantissa (52 bits) =
1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101


The base ten decimal number 10 000 011 001 101 110 111 100 111 011 011 010 100 111 010 001 010 040 converted and written in 64 bit double precision IEEE 754 binary floating point representation:

0 - 100 1010 1011 - 1010 1011 1010 0100 1001 0000 0001 1110 0011 1110 1111 1011 0101

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100