64bit IEEE 754: Decimal -> Double Precision Floating Point Binary: 100 000 000 101 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 022 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 100 000 000 101 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 022(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 100 000 000 101 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 022 ÷ 2 = 50 000 000 050 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 011 + 0;
  • 50 000 000 050 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 011 ÷ 2 = 25 000 000 025 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 005 + 1;
  • 25 000 000 025 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 005 ÷ 2 = 12 500 000 012 625 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 + 1;
  • 12 500 000 012 625 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 ÷ 2 = 6 250 000 006 312 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 + 0;
  • 6 250 000 006 312 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 ÷ 2 = 3 125 000 003 156 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 1;
  • 3 125 000 003 156 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 1 562 500 001 578 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 1 562 500 001 578 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 781 250 000 789 062 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 781 250 000 789 062 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 390 625 000 394 531 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 390 625 000 394 531 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 195 312 500 197 265 625 000 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 195 312 500 197 265 625 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 97 656 250 098 632 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 97 656 250 098 632 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 48 828 125 049 316 406 250 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 48 828 125 049 316 406 250 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 24 414 062 524 658 203 125 000 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 24 414 062 524 658 203 125 000 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 12 207 031 262 329 101 562 500 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 12 207 031 262 329 101 562 500 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 6 103 515 631 164 550 781 250 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 6 103 515 631 164 550 781 250 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 3 051 757 815 582 275 390 625 000 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 3 051 757 815 582 275 390 625 000 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 1 525 878 907 791 137 695 312 500 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 1 525 878 907 791 137 695 312 500 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 762 939 453 895 568 847 656 250 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 762 939 453 895 568 847 656 250 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 381 469 726 947 784 423 828 125 000 000 000 000 000 000 000 000 000 000 000 + 0;
  • 381 469 726 947 784 423 828 125 000 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 190 734 863 473 892 211 914 062 500 000 000 000 000 000 000 000 000 000 000 + 0;
  • 190 734 863 473 892 211 914 062 500 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 95 367 431 736 946 105 957 031 250 000 000 000 000 000 000 000 000 000 000 + 0;
  • 95 367 431 736 946 105 957 031 250 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 47 683 715 868 473 052 978 515 625 000 000 000 000 000 000 000 000 000 000 + 0;
  • 47 683 715 868 473 052 978 515 625 000 000 000 000 000 000 000 000 000 000 ÷ 2 = 23 841 857 934 236 526 489 257 812 500 000 000 000 000 000 000 000 000 000 + 0;
  • 23 841 857 934 236 526 489 257 812 500 000 000 000 000 000 000 000 000 000 ÷ 2 = 11 920 928 967 118 263 244 628 906 250 000 000 000 000 000 000 000 000 000 + 0;
  • 11 920 928 967 118 263 244 628 906 250 000 000 000 000 000 000 000 000 000 ÷ 2 = 5 960 464 483 559 131 622 314 453 125 000 000 000 000 000 000 000 000 000 + 0;
  • 5 960 464 483 559 131 622 314 453 125 000 000 000 000 000 000 000 000 000 ÷ 2 = 2 980 232 241 779 565 811 157 226 562 500 000 000 000 000 000 000 000 000 + 0;
  • 2 980 232 241 779 565 811 157 226 562 500 000 000 000 000 000 000 000 000 ÷ 2 = 1 490 116 120 889 782 905 578 613 281 250 000 000 000 000 000 000 000 000 + 0;
  • 1 490 116 120 889 782 905 578 613 281 250 000 000 000 000 000 000 000 000 ÷ 2 = 745 058 060 444 891 452 789 306 640 625 000 000 000 000 000 000 000 000 + 0;
  • 745 058 060 444 891 452 789 306 640 625 000 000 000 000 000 000 000 000 ÷ 2 = 372 529 030 222 445 726 394 653 320 312 500 000 000 000 000 000 000 000 + 0;
  • 372 529 030 222 445 726 394 653 320 312 500 000 000 000 000 000 000 000 ÷ 2 = 186 264 515 111 222 863 197 326 660 156 250 000 000 000 000 000 000 000 + 0;
  • 186 264 515 111 222 863 197 326 660 156 250 000 000 000 000 000 000 000 ÷ 2 = 93 132 257 555 611 431 598 663 330 078 125 000 000 000 000 000 000 000 + 0;
  • 93 132 257 555 611 431 598 663 330 078 125 000 000 000 000 000 000 000 ÷ 2 = 46 566 128 777 805 715 799 331 665 039 062 500 000 000 000 000 000 000 + 0;
  • 46 566 128 777 805 715 799 331 665 039 062 500 000 000 000 000 000 000 ÷ 2 = 23 283 064 388 902 857 899 665 832 519 531 250 000 000 000 000 000 000 + 0;
  • 23 283 064 388 902 857 899 665 832 519 531 250 000 000 000 000 000 000 ÷ 2 = 11 641 532 194 451 428 949 832 916 259 765 625 000 000 000 000 000 000 + 0;
  • 11 641 532 194 451 428 949 832 916 259 765 625 000 000 000 000 000 000 ÷ 2 = 5 820 766 097 225 714 474 916 458 129 882 812 500 000 000 000 000 000 + 0;
  • 5 820 766 097 225 714 474 916 458 129 882 812 500 000 000 000 000 000 ÷ 2 = 2 910 383 048 612 857 237 458 229 064 941 406 250 000 000 000 000 000 + 0;
  • 2 910 383 048 612 857 237 458 229 064 941 406 250 000 000 000 000 000 ÷ 2 = 1 455 191 524 306 428 618 729 114 532 470 703 125 000 000 000 000 000 + 0;
  • 1 455 191 524 306 428 618 729 114 532 470 703 125 000 000 000 000 000 ÷ 2 = 727 595 762 153 214 309 364 557 266 235 351 562 500 000 000 000 000 + 0;
  • 727 595 762 153 214 309 364 557 266 235 351 562 500 000 000 000 000 ÷ 2 = 363 797 881 076 607 154 682 278 633 117 675 781 250 000 000 000 000 + 0;
  • 363 797 881 076 607 154 682 278 633 117 675 781 250 000 000 000 000 ÷ 2 = 181 898 940 538 303 577 341 139 316 558 837 890 625 000 000 000 000 + 0;
  • 181 898 940 538 303 577 341 139 316 558 837 890 625 000 000 000 000 ÷ 2 = 90 949 470 269 151 788 670 569 658 279 418 945 312 500 000 000 000 + 0;
  • 90 949 470 269 151 788 670 569 658 279 418 945 312 500 000 000 000 ÷ 2 = 45 474 735 134 575 894 335 284 829 139 709 472 656 250 000 000 000 + 0;
  • 45 474 735 134 575 894 335 284 829 139 709 472 656 250 000 000 000 ÷ 2 = 22 737 367 567 287 947 167 642 414 569 854 736 328 125 000 000 000 + 0;
  • 22 737 367 567 287 947 167 642 414 569 854 736 328 125 000 000 000 ÷ 2 = 11 368 683 783 643 973 583 821 207 284 927 368 164 062 500 000 000 + 0;
  • 11 368 683 783 643 973 583 821 207 284 927 368 164 062 500 000 000 ÷ 2 = 5 684 341 891 821 986 791 910 603 642 463 684 082 031 250 000 000 + 0;
  • 5 684 341 891 821 986 791 910 603 642 463 684 082 031 250 000 000 ÷ 2 = 2 842 170 945 910 993 395 955 301 821 231 842 041 015 625 000 000 + 0;
  • 2 842 170 945 910 993 395 955 301 821 231 842 041 015 625 000 000 ÷ 2 = 1 421 085 472 955 496 697 977 650 910 615 921 020 507 812 500 000 + 0;
  • 1 421 085 472 955 496 697 977 650 910 615 921 020 507 812 500 000 ÷ 2 = 710 542 736 477 748 348 988 825 455 307 960 510 253 906 250 000 + 0;
  • 710 542 736 477 748 348 988 825 455 307 960 510 253 906 250 000 ÷ 2 = 355 271 368 238 874 174 494 412 727 653 980 255 126 953 125 000 + 0;
  • 355 271 368 238 874 174 494 412 727 653 980 255 126 953 125 000 ÷ 2 = 177 635 684 119 437 087 247 206 363 826 990 127 563 476 562 500 + 0;
  • 177 635 684 119 437 087 247 206 363 826 990 127 563 476 562 500 ÷ 2 = 88 817 842 059 718 543 623 603 181 913 495 063 781 738 281 250 + 0;
  • 88 817 842 059 718 543 623 603 181 913 495 063 781 738 281 250 ÷ 2 = 44 408 921 029 859 271 811 801 590 956 747 531 890 869 140 625 + 0;
  • 44 408 921 029 859 271 811 801 590 956 747 531 890 869 140 625 ÷ 2 = 22 204 460 514 929 635 905 900 795 478 373 765 945 434 570 312 + 1;
  • 22 204 460 514 929 635 905 900 795 478 373 765 945 434 570 312 ÷ 2 = 11 102 230 257 464 817 952 950 397 739 186 882 972 717 285 156 + 0;
  • 11 102 230 257 464 817 952 950 397 739 186 882 972 717 285 156 ÷ 2 = 5 551 115 128 732 408 976 475 198 869 593 441 486 358 642 578 + 0;
  • 5 551 115 128 732 408 976 475 198 869 593 441 486 358 642 578 ÷ 2 = 2 775 557 564 366 204 488 237 599 434 796 720 743 179 321 289 + 0;
  • 2 775 557 564 366 204 488 237 599 434 796 720 743 179 321 289 ÷ 2 = 1 387 778 782 183 102 244 118 799 717 398 360 371 589 660 644 + 1;
  • 1 387 778 782 183 102 244 118 799 717 398 360 371 589 660 644 ÷ 2 = 693 889 391 091 551 122 059 399 858 699 180 185 794 830 322 + 0;
  • 693 889 391 091 551 122 059 399 858 699 180 185 794 830 322 ÷ 2 = 346 944 695 545 775 561 029 699 929 349 590 092 897 415 161 + 0;
  • 346 944 695 545 775 561 029 699 929 349 590 092 897 415 161 ÷ 2 = 173 472 347 772 887 780 514 849 964 674 795 046 448 707 580 + 1;
  • 173 472 347 772 887 780 514 849 964 674 795 046 448 707 580 ÷ 2 = 86 736 173 886 443 890 257 424 982 337 397 523 224 353 790 + 0;
  • 86 736 173 886 443 890 257 424 982 337 397 523 224 353 790 ÷ 2 = 43 368 086 943 221 945 128 712 491 168 698 761 612 176 895 + 0;
  • 43 368 086 943 221 945 128 712 491 168 698 761 612 176 895 ÷ 2 = 21 684 043 471 610 972 564 356 245 584 349 380 806 088 447 + 1;
  • 21 684 043 471 610 972 564 356 245 584 349 380 806 088 447 ÷ 2 = 10 842 021 735 805 486 282 178 122 792 174 690 403 044 223 + 1;
  • 10 842 021 735 805 486 282 178 122 792 174 690 403 044 223 ÷ 2 = 5 421 010 867 902 743 141 089 061 396 087 345 201 522 111 + 1;
  • 5 421 010 867 902 743 141 089 061 396 087 345 201 522 111 ÷ 2 = 2 710 505 433 951 371 570 544 530 698 043 672 600 761 055 + 1;
  • 2 710 505 433 951 371 570 544 530 698 043 672 600 761 055 ÷ 2 = 1 355 252 716 975 685 785 272 265 349 021 836 300 380 527 + 1;
  • 1 355 252 716 975 685 785 272 265 349 021 836 300 380 527 ÷ 2 = 677 626 358 487 842 892 636 132 674 510 918 150 190 263 + 1;
  • 677 626 358 487 842 892 636 132 674 510 918 150 190 263 ÷ 2 = 338 813 179 243 921 446 318 066 337 255 459 075 095 131 + 1;
  • 338 813 179 243 921 446 318 066 337 255 459 075 095 131 ÷ 2 = 169 406 589 621 960 723 159 033 168 627 729 537 547 565 + 1;
  • 169 406 589 621 960 723 159 033 168 627 729 537 547 565 ÷ 2 = 84 703 294 810 980 361 579 516 584 313 864 768 773 782 + 1;
  • 84 703 294 810 980 361 579 516 584 313 864 768 773 782 ÷ 2 = 42 351 647 405 490 180 789 758 292 156 932 384 386 891 + 0;
  • 42 351 647 405 490 180 789 758 292 156 932 384 386 891 ÷ 2 = 21 175 823 702 745 090 394 879 146 078 466 192 193 445 + 1;
  • 21 175 823 702 745 090 394 879 146 078 466 192 193 445 ÷ 2 = 10 587 911 851 372 545 197 439 573 039 233 096 096 722 + 1;
  • 10 587 911 851 372 545 197 439 573 039 233 096 096 722 ÷ 2 = 5 293 955 925 686 272 598 719 786 519 616 548 048 361 + 0;
  • 5 293 955 925 686 272 598 719 786 519 616 548 048 361 ÷ 2 = 2 646 977 962 843 136 299 359 893 259 808 274 024 180 + 1;
  • 2 646 977 962 843 136 299 359 893 259 808 274 024 180 ÷ 2 = 1 323 488 981 421 568 149 679 946 629 904 137 012 090 + 0;
  • 1 323 488 981 421 568 149 679 946 629 904 137 012 090 ÷ 2 = 661 744 490 710 784 074 839 973 314 952 068 506 045 + 0;
  • 661 744 490 710 784 074 839 973 314 952 068 506 045 ÷ 2 = 330 872 245 355 392 037 419 986 657 476 034 253 022 + 1;
  • 330 872 245 355 392 037 419 986 657 476 034 253 022 ÷ 2 = 165 436 122 677 696 018 709 993 328 738 017 126 511 + 0;
  • 165 436 122 677 696 018 709 993 328 738 017 126 511 ÷ 2 = 82 718 061 338 848 009 354 996 664 369 008 563 255 + 1;
  • 82 718 061 338 848 009 354 996 664 369 008 563 255 ÷ 2 = 41 359 030 669 424 004 677 498 332 184 504 281 627 + 1;
  • 41 359 030 669 424 004 677 498 332 184 504 281 627 ÷ 2 = 20 679 515 334 712 002 338 749 166 092 252 140 813 + 1;
  • 20 679 515 334 712 002 338 749 166 092 252 140 813 ÷ 2 = 10 339 757 667 356 001 169 374 583 046 126 070 406 + 1;
  • 10 339 757 667 356 001 169 374 583 046 126 070 406 ÷ 2 = 5 169 878 833 678 000 584 687 291 523 063 035 203 + 0;
  • 5 169 878 833 678 000 584 687 291 523 063 035 203 ÷ 2 = 2 584 939 416 839 000 292 343 645 761 531 517 601 + 1;
  • 2 584 939 416 839 000 292 343 645 761 531 517 601 ÷ 2 = 1 292 469 708 419 500 146 171 822 880 765 758 800 + 1;
  • 1 292 469 708 419 500 146 171 822 880 765 758 800 ÷ 2 = 646 234 854 209 750 073 085 911 440 382 879 400 + 0;
  • 646 234 854 209 750 073 085 911 440 382 879 400 ÷ 2 = 323 117 427 104 875 036 542 955 720 191 439 700 + 0;
  • 323 117 427 104 875 036 542 955 720 191 439 700 ÷ 2 = 161 558 713 552 437 518 271 477 860 095 719 850 + 0;
  • 161 558 713 552 437 518 271 477 860 095 719 850 ÷ 2 = 80 779 356 776 218 759 135 738 930 047 859 925 + 0;
  • 80 779 356 776 218 759 135 738 930 047 859 925 ÷ 2 = 40 389 678 388 109 379 567 869 465 023 929 962 + 1;
  • 40 389 678 388 109 379 567 869 465 023 929 962 ÷ 2 = 20 194 839 194 054 689 783 934 732 511 964 981 + 0;
  • 20 194 839 194 054 689 783 934 732 511 964 981 ÷ 2 = 10 097 419 597 027 344 891 967 366 255 982 490 + 1;
  • 10 097 419 597 027 344 891 967 366 255 982 490 ÷ 2 = 5 048 709 798 513 672 445 983 683 127 991 245 + 0;
  • 5 048 709 798 513 672 445 983 683 127 991 245 ÷ 2 = 2 524 354 899 256 836 222 991 841 563 995 622 + 1;
  • 2 524 354 899 256 836 222 991 841 563 995 622 ÷ 2 = 1 262 177 449 628 418 111 495 920 781 997 811 + 0;
  • 1 262 177 449 628 418 111 495 920 781 997 811 ÷ 2 = 631 088 724 814 209 055 747 960 390 998 905 + 1;
  • 631 088 724 814 209 055 747 960 390 998 905 ÷ 2 = 315 544 362 407 104 527 873 980 195 499 452 + 1;
  • 315 544 362 407 104 527 873 980 195 499 452 ÷ 2 = 157 772 181 203 552 263 936 990 097 749 726 + 0;
  • 157 772 181 203 552 263 936 990 097 749 726 ÷ 2 = 78 886 090 601 776 131 968 495 048 874 863 + 0;
  • 78 886 090 601 776 131 968 495 048 874 863 ÷ 2 = 39 443 045 300 888 065 984 247 524 437 431 + 1;
  • 39 443 045 300 888 065 984 247 524 437 431 ÷ 2 = 19 721 522 650 444 032 992 123 762 218 715 + 1;
  • 19 721 522 650 444 032 992 123 762 218 715 ÷ 2 = 9 860 761 325 222 016 496 061 881 109 357 + 1;
  • 9 860 761 325 222 016 496 061 881 109 357 ÷ 2 = 4 930 380 662 611 008 248 030 940 554 678 + 1;
  • 4 930 380 662 611 008 248 030 940 554 678 ÷ 2 = 2 465 190 331 305 504 124 015 470 277 339 + 0;
  • 2 465 190 331 305 504 124 015 470 277 339 ÷ 2 = 1 232 595 165 652 752 062 007 735 138 669 + 1;
  • 1 232 595 165 652 752 062 007 735 138 669 ÷ 2 = 616 297 582 826 376 031 003 867 569 334 + 1;
  • 616 297 582 826 376 031 003 867 569 334 ÷ 2 = 308 148 791 413 188 015 501 933 784 667 + 0;
  • 308 148 791 413 188 015 501 933 784 667 ÷ 2 = 154 074 395 706 594 007 750 966 892 333 + 1;
  • 154 074 395 706 594 007 750 966 892 333 ÷ 2 = 77 037 197 853 297 003 875 483 446 166 + 1;
  • 77 037 197 853 297 003 875 483 446 166 ÷ 2 = 38 518 598 926 648 501 937 741 723 083 + 0;
  • 38 518 598 926 648 501 937 741 723 083 ÷ 2 = 19 259 299 463 324 250 968 870 861 541 + 1;
  • 19 259 299 463 324 250 968 870 861 541 ÷ 2 = 9 629 649 731 662 125 484 435 430 770 + 1;
  • 9 629 649 731 662 125 484 435 430 770 ÷ 2 = 4 814 824 865 831 062 742 217 715 385 + 0;
  • 4 814 824 865 831 062 742 217 715 385 ÷ 2 = 2 407 412 432 915 531 371 108 857 692 + 1;
  • 2 407 412 432 915 531 371 108 857 692 ÷ 2 = 1 203 706 216 457 765 685 554 428 846 + 0;
  • 1 203 706 216 457 765 685 554 428 846 ÷ 2 = 601 853 108 228 882 842 777 214 423 + 0;
  • 601 853 108 228 882 842 777 214 423 ÷ 2 = 300 926 554 114 441 421 388 607 211 + 1;
  • 300 926 554 114 441 421 388 607 211 ÷ 2 = 150 463 277 057 220 710 694 303 605 + 1;
  • 150 463 277 057 220 710 694 303 605 ÷ 2 = 75 231 638 528 610 355 347 151 802 + 1;
  • 75 231 638 528 610 355 347 151 802 ÷ 2 = 37 615 819 264 305 177 673 575 901 + 0;
  • 37 615 819 264 305 177 673 575 901 ÷ 2 = 18 807 909 632 152 588 836 787 950 + 1;
  • 18 807 909 632 152 588 836 787 950 ÷ 2 = 9 403 954 816 076 294 418 393 975 + 0;
  • 9 403 954 816 076 294 418 393 975 ÷ 2 = 4 701 977 408 038 147 209 196 987 + 1;
  • 4 701 977 408 038 147 209 196 987 ÷ 2 = 2 350 988 704 019 073 604 598 493 + 1;
  • 2 350 988 704 019 073 604 598 493 ÷ 2 = 1 175 494 352 009 536 802 299 246 + 1;
  • 1 175 494 352 009 536 802 299 246 ÷ 2 = 587 747 176 004 768 401 149 623 + 0;
  • 587 747 176 004 768 401 149 623 ÷ 2 = 293 873 588 002 384 200 574 811 + 1;
  • 293 873 588 002 384 200 574 811 ÷ 2 = 146 936 794 001 192 100 287 405 + 1;
  • 146 936 794 001 192 100 287 405 ÷ 2 = 73 468 397 000 596 050 143 702 + 1;
  • 73 468 397 000 596 050 143 702 ÷ 2 = 36 734 198 500 298 025 071 851 + 0;
  • 36 734 198 500 298 025 071 851 ÷ 2 = 18 367 099 250 149 012 535 925 + 1;
  • 18 367 099 250 149 012 535 925 ÷ 2 = 9 183 549 625 074 506 267 962 + 1;
  • 9 183 549 625 074 506 267 962 ÷ 2 = 4 591 774 812 537 253 133 981 + 0;
  • 4 591 774 812 537 253 133 981 ÷ 2 = 2 295 887 406 268 626 566 990 + 1;
  • 2 295 887 406 268 626 566 990 ÷ 2 = 1 147 943 703 134 313 283 495 + 0;
  • 1 147 943 703 134 313 283 495 ÷ 2 = 573 971 851 567 156 641 747 + 1;
  • 573 971 851 567 156 641 747 ÷ 2 = 286 985 925 783 578 320 873 + 1;
  • 286 985 925 783 578 320 873 ÷ 2 = 143 492 962 891 789 160 436 + 1;
  • 143 492 962 891 789 160 436 ÷ 2 = 71 746 481 445 894 580 218 + 0;
  • 71 746 481 445 894 580 218 ÷ 2 = 35 873 240 722 947 290 109 + 0;
  • 35 873 240 722 947 290 109 ÷ 2 = 17 936 620 361 473 645 054 + 1;
  • 17 936 620 361 473 645 054 ÷ 2 = 8 968 310 180 736 822 527 + 0;
  • 8 968 310 180 736 822 527 ÷ 2 = 4 484 155 090 368 411 263 + 1;
  • 4 484 155 090 368 411 263 ÷ 2 = 2 242 077 545 184 205 631 + 1;
  • 2 242 077 545 184 205 631 ÷ 2 = 1 121 038 772 592 102 815 + 1;
  • 1 121 038 772 592 102 815 ÷ 2 = 560 519 386 296 051 407 + 1;
  • 560 519 386 296 051 407 ÷ 2 = 280 259 693 148 025 703 + 1;
  • 280 259 693 148 025 703 ÷ 2 = 140 129 846 574 012 851 + 1;
  • 140 129 846 574 012 851 ÷ 2 = 70 064 923 287 006 425 + 1;
  • 70 064 923 287 006 425 ÷ 2 = 35 032 461 643 503 212 + 1;
  • 35 032 461 643 503 212 ÷ 2 = 17 516 230 821 751 606 + 0;
  • 17 516 230 821 751 606 ÷ 2 = 8 758 115 410 875 803 + 0;
  • 8 758 115 410 875 803 ÷ 2 = 4 379 057 705 437 901 + 1;
  • 4 379 057 705 437 901 ÷ 2 = 2 189 528 852 718 950 + 1;
  • 2 189 528 852 718 950 ÷ 2 = 1 094 764 426 359 475 + 0;
  • 1 094 764 426 359 475 ÷ 2 = 547 382 213 179 737 + 1;
  • 547 382 213 179 737 ÷ 2 = 273 691 106 589 868 + 1;
  • 273 691 106 589 868 ÷ 2 = 136 845 553 294 934 + 0;
  • 136 845 553 294 934 ÷ 2 = 68 422 776 647 467 + 0;
  • 68 422 776 647 467 ÷ 2 = 34 211 388 323 733 + 1;
  • 34 211 388 323 733 ÷ 2 = 17 105 694 161 866 + 1;
  • 17 105 694 161 866 ÷ 2 = 8 552 847 080 933 + 0;
  • 8 552 847 080 933 ÷ 2 = 4 276 423 540 466 + 1;
  • 4 276 423 540 466 ÷ 2 = 2 138 211 770 233 + 0;
  • 2 138 211 770 233 ÷ 2 = 1 069 105 885 116 + 1;
  • 1 069 105 885 116 ÷ 2 = 534 552 942 558 + 0;
  • 534 552 942 558 ÷ 2 = 267 276 471 279 + 0;
  • 267 276 471 279 ÷ 2 = 133 638 235 639 + 1;
  • 133 638 235 639 ÷ 2 = 66 819 117 819 + 1;
  • 66 819 117 819 ÷ 2 = 33 409 558 909 + 1;
  • 33 409 558 909 ÷ 2 = 16 704 779 454 + 1;
  • 16 704 779 454 ÷ 2 = 8 352 389 727 + 0;
  • 8 352 389 727 ÷ 2 = 4 176 194 863 + 1;
  • 4 176 194 863 ÷ 2 = 2 088 097 431 + 1;
  • 2 088 097 431 ÷ 2 = 1 044 048 715 + 1;
  • 1 044 048 715 ÷ 2 = 522 024 357 + 1;
  • 522 024 357 ÷ 2 = 261 012 178 + 1;
  • 261 012 178 ÷ 2 = 130 506 089 + 0;
  • 130 506 089 ÷ 2 = 65 253 044 + 1;
  • 65 253 044 ÷ 2 = 32 626 522 + 0;
  • 32 626 522 ÷ 2 = 16 313 261 + 0;
  • 16 313 261 ÷ 2 = 8 156 630 + 1;
  • 8 156 630 ÷ 2 = 4 078 315 + 0;
  • 4 078 315 ÷ 2 = 2 039 157 + 1;
  • 2 039 157 ÷ 2 = 1 019 578 + 1;
  • 1 019 578 ÷ 2 = 509 789 + 0;
  • 509 789 ÷ 2 = 254 894 + 1;
  • 254 894 ÷ 2 = 127 447 + 0;
  • 127 447 ÷ 2 = 63 723 + 1;
  • 63 723 ÷ 2 = 31 861 + 1;
  • 31 861 ÷ 2 = 15 930 + 1;
  • 15 930 ÷ 2 = 7 965 + 0;
  • 7 965 ÷ 2 = 3 982 + 1;
  • 3 982 ÷ 2 = 1 991 + 0;
  • 1 991 ÷ 2 = 995 + 1;
  • 995 ÷ 2 = 497 + 1;
  • 497 ÷ 2 = 248 + 1;
  • 248 ÷ 2 = 124 + 0;
  • 124 ÷ 2 = 62 + 0;
  • 62 ÷ 2 = 31 + 0;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


100 000 000 101 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 022(10) =


11 1110 0011 1010 1110 1011 0100 1011 1110 1111 0010 1011 0011 0110 0111 1111 1010 0111 0101 1011 1011 1010 1110 0101 1011 0110 1111 0011 0101 0100 0011 0111 1010 0101 1011 1111 1110 0100 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 205 positions to the left, so that only one non zero digit remains to the left of it:


100 000 000 101 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 022(10) =


11 1110 0011 1010 1110 1011 0100 1011 1110 1111 0010 1011 0011 0110 0111 1111 1010 0111 0101 1011 1011 1010 1110 0101 1011 0110 1111 0011 0101 0100 0011 0111 1010 0101 1011 1111 1110 0100 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0110(2) =


11 1110 0011 1010 1110 1011 0100 1011 1110 1111 0010 1011 0011 0110 0111 1111 1010 0111 0101 1011 1011 1010 1110 0101 1011 0110 1111 0011 0101 0100 0011 0111 1010 0101 1011 1111 1110 0100 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0110(2) × 20 =


1.1111 0001 1101 0111 0101 1010 0101 1111 0111 1001 0101 1001 1011 0011 1111 1101 0011 1010 1101 1101 1101 0111 0010 1101 1011 0111 1001 1010 1010 0001 1011 1101 0010 1101 1111 1111 0010 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1011 0(2) × 2205


4. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 205


Mantissa (not normalized):
1.1111 0001 1101 0111 0101 1010 0101 1111 0111 1001 0101 1001 1011 0011 1111 1101 0011 1010 1101 1101 1101 0111 0010 1101 1011 0111 1001 1010 1010 0001 1011 1101 0010 1101 1111 1111 0010 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1011 0


5. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


205 + 2(11-1) - 1 =


(205 + 1 023)(10) =


1 228(10)


6. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 228 ÷ 2 = 614 + 0;
  • 614 ÷ 2 = 307 + 0;
  • 307 ÷ 2 = 153 + 1;
  • 153 ÷ 2 = 76 + 1;
  • 76 ÷ 2 = 38 + 0;
  • 38 ÷ 2 = 19 + 0;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1228(10) =


100 1100 1100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1111 0001 1101 0111 0101 1010 0101 1111 0111 1001 0101 1001 1011 0 0111 1111 1010 0111 0101 1011 1011 1010 1110 0101 1011 0110 1111 0011 0101 0100 0011 0111 1010 0101 1011 1111 1110 0100 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0110 =


1111 0001 1101 0111 0101 1010 0101 1111 0111 1001 0101 1001 1011


9. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
100 1100 1100


Mantissa (52 bits) =
1111 0001 1101 0111 0101 1010 0101 1111 0111 1001 0101 1001 1011


The base ten decimal number 100 000 000 101 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 022 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 100 1100 1100 - 1111 0001 1101 0111 0101 1010 0101 1111 0111 1001 0101 1001 1011

(64 bits IEEE 754)
  • Sign (1 bit):

    • 0

      63
  • Exponent (11 bits):

    • 1

      62
    • 0

      61
    • 0

      60
    • 1

      59
    • 1

      58
    • 0

      57
    • 0

      56
    • 1

      55
    • 1

      54
    • 0

      53
    • 0

      52
  • Mantissa (52 bits):

    • 1

      51
    • 1

      50
    • 1

      49
    • 1

      48
    • 0

      47
    • 0

      46
    • 0

      45
    • 1

      44
    • 1

      43
    • 1

      42
    • 0

      41
    • 1

      40
    • 0

      39
    • 1

      38
    • 1

      37
    • 1

      36
    • 0

      35
    • 1

      34
    • 0

      33
    • 1

      32
    • 1

      31
    • 0

      30
    • 1

      29
    • 0

      28
    • 0

      27
    • 1

      26
    • 0

      25
    • 1

      24
    • 1

      23
    • 1

      22
    • 1

      21
    • 1

      20
    • 0

      19
    • 1

      18
    • 1

      17
    • 1

      16
    • 1

      15
    • 0

      14
    • 0

      13
    • 1

      12
    • 0

      11
    • 1

      10
    • 0

      9
    • 1

      8
    • 1

      7
    • 0

      6
    • 0

      5
    • 1

      4
    • 1

      3
    • 0

      2
    • 1

      1
    • 1

      0

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 100 000 000 101 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 022 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:29 UTC (GMT)
Number 71 767 554 534 846 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:29 UTC (GMT)
Number 0.020 382 282 490 378 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 4 340 000 000 000 008 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 634 041 305 999 999 998 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number -201 528 000 000 000 000 000 000 057 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 602 214 085 699 999 999 999 934 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number -0.000 000 000 000 000 051 120 132 432 695 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 12 456 325.17 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 18 446 744 073 709 600 051 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100