64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 1.570 796 326 794 896 619 231 321 691 635 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 1.570 796 326 794 896 619 231 321 691 635(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 1.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


1(10) =


1(2)


3. Convert to binary (base 2) the fractional part: 0.570 796 326 794 896 619 231 321 691 635.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.570 796 326 794 896 619 231 321 691 635 × 2 = 1 + 0.141 592 653 589 793 238 462 643 383 27;
  • 2) 0.141 592 653 589 793 238 462 643 383 27 × 2 = 0 + 0.283 185 307 179 586 476 925 286 766 54;
  • 3) 0.283 185 307 179 586 476 925 286 766 54 × 2 = 0 + 0.566 370 614 359 172 953 850 573 533 08;
  • 4) 0.566 370 614 359 172 953 850 573 533 08 × 2 = 1 + 0.132 741 228 718 345 907 701 147 066 16;
  • 5) 0.132 741 228 718 345 907 701 147 066 16 × 2 = 0 + 0.265 482 457 436 691 815 402 294 132 32;
  • 6) 0.265 482 457 436 691 815 402 294 132 32 × 2 = 0 + 0.530 964 914 873 383 630 804 588 264 64;
  • 7) 0.530 964 914 873 383 630 804 588 264 64 × 2 = 1 + 0.061 929 829 746 767 261 609 176 529 28;
  • 8) 0.061 929 829 746 767 261 609 176 529 28 × 2 = 0 + 0.123 859 659 493 534 523 218 353 058 56;
  • 9) 0.123 859 659 493 534 523 218 353 058 56 × 2 = 0 + 0.247 719 318 987 069 046 436 706 117 12;
  • 10) 0.247 719 318 987 069 046 436 706 117 12 × 2 = 0 + 0.495 438 637 974 138 092 873 412 234 24;
  • 11) 0.495 438 637 974 138 092 873 412 234 24 × 2 = 0 + 0.990 877 275 948 276 185 746 824 468 48;
  • 12) 0.990 877 275 948 276 185 746 824 468 48 × 2 = 1 + 0.981 754 551 896 552 371 493 648 936 96;
  • 13) 0.981 754 551 896 552 371 493 648 936 96 × 2 = 1 + 0.963 509 103 793 104 742 987 297 873 92;
  • 14) 0.963 509 103 793 104 742 987 297 873 92 × 2 = 1 + 0.927 018 207 586 209 485 974 595 747 84;
  • 15) 0.927 018 207 586 209 485 974 595 747 84 × 2 = 1 + 0.854 036 415 172 418 971 949 191 495 68;
  • 16) 0.854 036 415 172 418 971 949 191 495 68 × 2 = 1 + 0.708 072 830 344 837 943 898 382 991 36;
  • 17) 0.708 072 830 344 837 943 898 382 991 36 × 2 = 1 + 0.416 145 660 689 675 887 796 765 982 72;
  • 18) 0.416 145 660 689 675 887 796 765 982 72 × 2 = 0 + 0.832 291 321 379 351 775 593 531 965 44;
  • 19) 0.832 291 321 379 351 775 593 531 965 44 × 2 = 1 + 0.664 582 642 758 703 551 187 063 930 88;
  • 20) 0.664 582 642 758 703 551 187 063 930 88 × 2 = 1 + 0.329 165 285 517 407 102 374 127 861 76;
  • 21) 0.329 165 285 517 407 102 374 127 861 76 × 2 = 0 + 0.658 330 571 034 814 204 748 255 723 52;
  • 22) 0.658 330 571 034 814 204 748 255 723 52 × 2 = 1 + 0.316 661 142 069 628 409 496 511 447 04;
  • 23) 0.316 661 142 069 628 409 496 511 447 04 × 2 = 0 + 0.633 322 284 139 256 818 993 022 894 08;
  • 24) 0.633 322 284 139 256 818 993 022 894 08 × 2 = 1 + 0.266 644 568 278 513 637 986 045 788 16;
  • 25) 0.266 644 568 278 513 637 986 045 788 16 × 2 = 0 + 0.533 289 136 557 027 275 972 091 576 32;
  • 26) 0.533 289 136 557 027 275 972 091 576 32 × 2 = 1 + 0.066 578 273 114 054 551 944 183 152 64;
  • 27) 0.066 578 273 114 054 551 944 183 152 64 × 2 = 0 + 0.133 156 546 228 109 103 888 366 305 28;
  • 28) 0.133 156 546 228 109 103 888 366 305 28 × 2 = 0 + 0.266 313 092 456 218 207 776 732 610 56;
  • 29) 0.266 313 092 456 218 207 776 732 610 56 × 2 = 0 + 0.532 626 184 912 436 415 553 465 221 12;
  • 30) 0.532 626 184 912 436 415 553 465 221 12 × 2 = 1 + 0.065 252 369 824 872 831 106 930 442 24;
  • 31) 0.065 252 369 824 872 831 106 930 442 24 × 2 = 0 + 0.130 504 739 649 745 662 213 860 884 48;
  • 32) 0.130 504 739 649 745 662 213 860 884 48 × 2 = 0 + 0.261 009 479 299 491 324 427 721 768 96;
  • 33) 0.261 009 479 299 491 324 427 721 768 96 × 2 = 0 + 0.522 018 958 598 982 648 855 443 537 92;
  • 34) 0.522 018 958 598 982 648 855 443 537 92 × 2 = 1 + 0.044 037 917 197 965 297 710 887 075 84;
  • 35) 0.044 037 917 197 965 297 710 887 075 84 × 2 = 0 + 0.088 075 834 395 930 595 421 774 151 68;
  • 36) 0.088 075 834 395 930 595 421 774 151 68 × 2 = 0 + 0.176 151 668 791 861 190 843 548 303 36;
  • 37) 0.176 151 668 791 861 190 843 548 303 36 × 2 = 0 + 0.352 303 337 583 722 381 687 096 606 72;
  • 38) 0.352 303 337 583 722 381 687 096 606 72 × 2 = 0 + 0.704 606 675 167 444 763 374 193 213 44;
  • 39) 0.704 606 675 167 444 763 374 193 213 44 × 2 = 1 + 0.409 213 350 334 889 526 748 386 426 88;
  • 40) 0.409 213 350 334 889 526 748 386 426 88 × 2 = 0 + 0.818 426 700 669 779 053 496 772 853 76;
  • 41) 0.818 426 700 669 779 053 496 772 853 76 × 2 = 1 + 0.636 853 401 339 558 106 993 545 707 52;
  • 42) 0.636 853 401 339 558 106 993 545 707 52 × 2 = 1 + 0.273 706 802 679 116 213 987 091 415 04;
  • 43) 0.273 706 802 679 116 213 987 091 415 04 × 2 = 0 + 0.547 413 605 358 232 427 974 182 830 08;
  • 44) 0.547 413 605 358 232 427 974 182 830 08 × 2 = 1 + 0.094 827 210 716 464 855 948 365 660 16;
  • 45) 0.094 827 210 716 464 855 948 365 660 16 × 2 = 0 + 0.189 654 421 432 929 711 896 731 320 32;
  • 46) 0.189 654 421 432 929 711 896 731 320 32 × 2 = 0 + 0.379 308 842 865 859 423 793 462 640 64;
  • 47) 0.379 308 842 865 859 423 793 462 640 64 × 2 = 0 + 0.758 617 685 731 718 847 586 925 281 28;
  • 48) 0.758 617 685 731 718 847 586 925 281 28 × 2 = 1 + 0.517 235 371 463 437 695 173 850 562 56;
  • 49) 0.517 235 371 463 437 695 173 850 562 56 × 2 = 1 + 0.034 470 742 926 875 390 347 701 125 12;
  • 50) 0.034 470 742 926 875 390 347 701 125 12 × 2 = 0 + 0.068 941 485 853 750 780 695 402 250 24;
  • 51) 0.068 941 485 853 750 780 695 402 250 24 × 2 = 0 + 0.137 882 971 707 501 561 390 804 500 48;
  • 52) 0.137 882 971 707 501 561 390 804 500 48 × 2 = 0 + 0.275 765 943 415 003 122 781 609 000 96;
  • 53) 0.275 765 943 415 003 122 781 609 000 96 × 2 = 0 + 0.551 531 886 830 006 245 563 218 001 92;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.570 796 326 794 896 619 231 321 691 635(10) =


0.1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 0(2)


5. Positive number before normalization:

1.570 796 326 794 896 619 231 321 691 635(10) =


1.1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 0 positions to the left, so that only one non zero digit remains to the left of it:


1.570 796 326 794 896 619 231 321 691 635(10) =


1.1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 0(2) =


1.1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 0(2) × 20


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 0


Mantissa (not normalized):
1.1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 0


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


0 + 2(11-1) - 1 =


(0 + 1 023)(10) =


1 023(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 023 ÷ 2 = 511 + 1;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1023(10) =


011 1111 1111(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 0 =


1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1111


Mantissa (52 bits) =
1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000


The base ten decimal number 1.570 796 326 794 896 619 231 321 691 635 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1111 - 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 138.012 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:06 UTC (GMT)
Number 19 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number 256 016 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number -4.998 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number 6 061 989 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number 13.01 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number 23.376 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number -7.536 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number 1.000 000 049 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:05 UTC (GMT)
Number 5.18 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 03:04 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100