Convert the Number 1.010 101 010 101 016 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 1.010 101 010 101 016(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 1.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


1(10) =


1(2)


3. Convert to binary (base 2) the fractional part: 0.010 101 010 101 016.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.010 101 010 101 016 × 2 = 0 + 0.020 202 020 202 032;
  • 2) 0.020 202 020 202 032 × 2 = 0 + 0.040 404 040 404 064;
  • 3) 0.040 404 040 404 064 × 2 = 0 + 0.080 808 080 808 128;
  • 4) 0.080 808 080 808 128 × 2 = 0 + 0.161 616 161 616 256;
  • 5) 0.161 616 161 616 256 × 2 = 0 + 0.323 232 323 232 512;
  • 6) 0.323 232 323 232 512 × 2 = 0 + 0.646 464 646 465 024;
  • 7) 0.646 464 646 465 024 × 2 = 1 + 0.292 929 292 930 048;
  • 8) 0.292 929 292 930 048 × 2 = 0 + 0.585 858 585 860 096;
  • 9) 0.585 858 585 860 096 × 2 = 1 + 0.171 717 171 720 192;
  • 10) 0.171 717 171 720 192 × 2 = 0 + 0.343 434 343 440 384;
  • 11) 0.343 434 343 440 384 × 2 = 0 + 0.686 868 686 880 768;
  • 12) 0.686 868 686 880 768 × 2 = 1 + 0.373 737 373 761 536;
  • 13) 0.373 737 373 761 536 × 2 = 0 + 0.747 474 747 523 072;
  • 14) 0.747 474 747 523 072 × 2 = 1 + 0.494 949 495 046 144;
  • 15) 0.494 949 495 046 144 × 2 = 0 + 0.989 898 990 092 288;
  • 16) 0.989 898 990 092 288 × 2 = 1 + 0.979 797 980 184 576;
  • 17) 0.979 797 980 184 576 × 2 = 1 + 0.959 595 960 369 152;
  • 18) 0.959 595 960 369 152 × 2 = 1 + 0.919 191 920 738 304;
  • 19) 0.919 191 920 738 304 × 2 = 1 + 0.838 383 841 476 608;
  • 20) 0.838 383 841 476 608 × 2 = 1 + 0.676 767 682 953 216;
  • 21) 0.676 767 682 953 216 × 2 = 1 + 0.353 535 365 906 432;
  • 22) 0.353 535 365 906 432 × 2 = 0 + 0.707 070 731 812 864;
  • 23) 0.707 070 731 812 864 × 2 = 1 + 0.414 141 463 625 728;
  • 24) 0.414 141 463 625 728 × 2 = 0 + 0.828 282 927 251 456;
  • 25) 0.828 282 927 251 456 × 2 = 1 + 0.656 565 854 502 912;
  • 26) 0.656 565 854 502 912 × 2 = 1 + 0.313 131 709 005 824;
  • 27) 0.313 131 709 005 824 × 2 = 0 + 0.626 263 418 011 648;
  • 28) 0.626 263 418 011 648 × 2 = 1 + 0.252 526 836 023 296;
  • 29) 0.252 526 836 023 296 × 2 = 0 + 0.505 053 672 046 592;
  • 30) 0.505 053 672 046 592 × 2 = 1 + 0.010 107 344 093 184;
  • 31) 0.010 107 344 093 184 × 2 = 0 + 0.020 214 688 186 368;
  • 32) 0.020 214 688 186 368 × 2 = 0 + 0.040 429 376 372 736;
  • 33) 0.040 429 376 372 736 × 2 = 0 + 0.080 858 752 745 472;
  • 34) 0.080 858 752 745 472 × 2 = 0 + 0.161 717 505 490 944;
  • 35) 0.161 717 505 490 944 × 2 = 0 + 0.323 435 010 981 888;
  • 36) 0.323 435 010 981 888 × 2 = 0 + 0.646 870 021 963 776;
  • 37) 0.646 870 021 963 776 × 2 = 1 + 0.293 740 043 927 552;
  • 38) 0.293 740 043 927 552 × 2 = 0 + 0.587 480 087 855 104;
  • 39) 0.587 480 087 855 104 × 2 = 1 + 0.174 960 175 710 208;
  • 40) 0.174 960 175 710 208 × 2 = 0 + 0.349 920 351 420 416;
  • 41) 0.349 920 351 420 416 × 2 = 0 + 0.699 840 702 840 832;
  • 42) 0.699 840 702 840 832 × 2 = 1 + 0.399 681 405 681 664;
  • 43) 0.399 681 405 681 664 × 2 = 0 + 0.799 362 811 363 328;
  • 44) 0.799 362 811 363 328 × 2 = 1 + 0.598 725 622 726 656;
  • 45) 0.598 725 622 726 656 × 2 = 1 + 0.197 451 245 453 312;
  • 46) 0.197 451 245 453 312 × 2 = 0 + 0.394 902 490 906 624;
  • 47) 0.394 902 490 906 624 × 2 = 0 + 0.789 804 981 813 248;
  • 48) 0.789 804 981 813 248 × 2 = 1 + 0.579 609 963 626 496;
  • 49) 0.579 609 963 626 496 × 2 = 1 + 0.159 219 927 252 992;
  • 50) 0.159 219 927 252 992 × 2 = 0 + 0.318 439 854 505 984;
  • 51) 0.318 439 854 505 984 × 2 = 0 + 0.636 879 709 011 968;
  • 52) 0.636 879 709 011 968 × 2 = 1 + 0.273 759 418 023 936;
  • 53) 0.273 759 418 023 936 × 2 = 0 + 0.547 518 836 047 872;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.010 101 010 101 016(10) =


0.0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001 0(2)


5. Positive number before normalization:

1.010 101 010 101 016(10) =


1.0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001 0(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 0 positions to the left, so that only one non zero digit remains to the left of it:


1.010 101 010 101 016(10) =


1.0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001 0(2) =


1.0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001 0(2) × 20


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 0


Mantissa (not normalized):
1.0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001 0


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


0 + 2(11-1) - 1 =


(0 + 1 023)(10) =


1 023(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 023 ÷ 2 = 511 + 1;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1023(10) =


011 1111 1111(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001 0 =


0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1111


Mantissa (52 bits) =
0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001


The base ten decimal number 1.010 101 010 101 016 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1111 - 0000 0010 1001 0101 1111 1010 1101 0100 0000 1010 0101 1001 1001

(64 bits IEEE 754)

Number 1.010 101 010 101 015 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 1.010 101 010 101 017 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 1.010 101 010 101 016 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 736 940 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 0.353 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 756 566 798 010 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 2.333 333 333 333 333 333 333 333 333 333 333 333 333 333 39 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 1 011 111 101 000 127 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 1.111 111 111 9 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 5 742 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 38.288 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
Number 2.333 333 333 333 333 333 333 333 333 333 335 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:19 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal