64bit IEEE 754: Decimal -> Double Precision Floating Point Binary: 0.841 471 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.841 471(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.841 471.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.841 471 × 2 = 1 + 0.682 942;
  • 2) 0.682 942 × 2 = 1 + 0.365 884;
  • 3) 0.365 884 × 2 = 0 + 0.731 768;
  • 4) 0.731 768 × 2 = 1 + 0.463 536;
  • 5) 0.463 536 × 2 = 0 + 0.927 072;
  • 6) 0.927 072 × 2 = 1 + 0.854 144;
  • 7) 0.854 144 × 2 = 1 + 0.708 288;
  • 8) 0.708 288 × 2 = 1 + 0.416 576;
  • 9) 0.416 576 × 2 = 0 + 0.833 152;
  • 10) 0.833 152 × 2 = 1 + 0.666 304;
  • 11) 0.666 304 × 2 = 1 + 0.332 608;
  • 12) 0.332 608 × 2 = 0 + 0.665 216;
  • 13) 0.665 216 × 2 = 1 + 0.330 432;
  • 14) 0.330 432 × 2 = 0 + 0.660 864;
  • 15) 0.660 864 × 2 = 1 + 0.321 728;
  • 16) 0.321 728 × 2 = 0 + 0.643 456;
  • 17) 0.643 456 × 2 = 1 + 0.286 912;
  • 18) 0.286 912 × 2 = 0 + 0.573 824;
  • 19) 0.573 824 × 2 = 1 + 0.147 648;
  • 20) 0.147 648 × 2 = 0 + 0.295 296;
  • 21) 0.295 296 × 2 = 0 + 0.590 592;
  • 22) 0.590 592 × 2 = 1 + 0.181 184;
  • 23) 0.181 184 × 2 = 0 + 0.362 368;
  • 24) 0.362 368 × 2 = 0 + 0.724 736;
  • 25) 0.724 736 × 2 = 1 + 0.449 472;
  • 26) 0.449 472 × 2 = 0 + 0.898 944;
  • 27) 0.898 944 × 2 = 1 + 0.797 888;
  • 28) 0.797 888 × 2 = 1 + 0.595 776;
  • 29) 0.595 776 × 2 = 1 + 0.191 552;
  • 30) 0.191 552 × 2 = 0 + 0.383 104;
  • 31) 0.383 104 × 2 = 0 + 0.766 208;
  • 32) 0.766 208 × 2 = 1 + 0.532 416;
  • 33) 0.532 416 × 2 = 1 + 0.064 832;
  • 34) 0.064 832 × 2 = 0 + 0.129 664;
  • 35) 0.129 664 × 2 = 0 + 0.259 328;
  • 36) 0.259 328 × 2 = 0 + 0.518 656;
  • 37) 0.518 656 × 2 = 1 + 0.037 312;
  • 38) 0.037 312 × 2 = 0 + 0.074 624;
  • 39) 0.074 624 × 2 = 0 + 0.149 248;
  • 40) 0.149 248 × 2 = 0 + 0.298 496;
  • 41) 0.298 496 × 2 = 0 + 0.596 992;
  • 42) 0.596 992 × 2 = 1 + 0.193 984;
  • 43) 0.193 984 × 2 = 0 + 0.387 968;
  • 44) 0.387 968 × 2 = 0 + 0.775 936;
  • 45) 0.775 936 × 2 = 1 + 0.551 872;
  • 46) 0.551 872 × 2 = 1 + 0.103 744;
  • 47) 0.103 744 × 2 = 0 + 0.207 488;
  • 48) 0.207 488 × 2 = 0 + 0.414 976;
  • 49) 0.414 976 × 2 = 0 + 0.829 952;
  • 50) 0.829 952 × 2 = 1 + 0.659 904;
  • 51) 0.659 904 × 2 = 1 + 0.319 808;
  • 52) 0.319 808 × 2 = 0 + 0.639 616;
  • 53) 0.639 616 × 2 = 1 + 0.279 232;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.841 471(10) =


0.1101 0111 0110 1010 1010 0100 1011 1001 1000 1000 0100 1100 0110 1(2)


5. Positive number before normalization:

0.841 471(10) =


0.1101 0111 0110 1010 1010 0100 1011 1001 1000 1000 0100 1100 0110 1(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.841 471(10) =


0.1101 0111 0110 1010 1010 0100 1011 1001 1000 1000 0100 1100 0110 1(2) =


0.1101 0111 0110 1010 1010 0100 1011 1001 1000 1000 0100 1100 0110 1(2) × 20 =


1.1010 1110 1101 0101 0100 1001 0111 0011 0001 0000 1001 1000 1101(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.1010 1110 1101 0101 0100 1001 0111 0011 0001 0000 1001 1000 1101


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-1 + 2(11-1) - 1 =


(-1 + 1 023)(10) =


1 022(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 022 ÷ 2 = 511 + 0;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1022(10) =


011 1111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1010 1110 1101 0101 0100 1001 0111 0011 0001 0000 1001 1000 1101 =


1010 1110 1101 0101 0100 1001 0111 0011 0001 0000 1001 1000 1101


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1110


Mantissa (52 bits) =
1010 1110 1101 0101 0100 1001 0111 0011 0001 0000 1001 1000 1101


The base ten decimal number 0.841 471 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1110 - 1010 1110 1101 0101 0100 1001 0111 0011 0001 0000 1001 1000 1101

(64 bits IEEE 754)
  • Sign (1 bit):

    • 0

      63
  • Exponent (11 bits):

    • 0

      62
    • 1

      61
    • 1

      60
    • 1

      59
    • 1

      58
    • 1

      57
    • 1

      56
    • 1

      55
    • 1

      54
    • 1

      53
    • 0

      52
  • Mantissa (52 bits):

    • 1

      51
    • 0

      50
    • 1

      49
    • 0

      48
    • 1

      47
    • 1

      46
    • 1

      45
    • 0

      44
    • 1

      43
    • 1

      42
    • 0

      41
    • 1

      40
    • 0

      39
    • 1

      38
    • 0

      37
    • 1

      36
    • 0

      35
    • 1

      34
    • 0

      33
    • 0

      32
    • 1

      31
    • 0

      30
    • 0

      29
    • 1

      28
    • 0

      27
    • 1

      26
    • 1

      25
    • 1

      24
    • 0

      23
    • 0

      22
    • 1

      21
    • 1

      20
    • 0

      19
    • 0

      18
    • 0

      17
    • 1

      16
    • 0

      15
    • 0

      14
    • 0

      13
    • 0

      12
    • 1

      11
    • 0

      10
    • 0

      9
    • 1

      8
    • 1

      7
    • 0

      6
    • 0

      5
    • 0

      4
    • 1

      3
    • 1

      2
    • 0

      1
    • 1

      0

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.841 471 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:17 UTC (GMT)
Number 18 429 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:17 UTC (GMT)
Number 390.441 874 999 999 981 810 105 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:17 UTC (GMT)
Number 737 034 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:16 UTC (GMT)
Number 90 390 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:16 UTC (GMT)
Number -0.003 137 615 631 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:16 UTC (GMT)
Number 97 650 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:16 UTC (GMT)
Number -999 999 930 396 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:16 UTC (GMT)
Number -2 147 483 573 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:16 UTC (GMT)
Number 8.000 976 681 723 3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 28 09:16 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100