Convert 0.707 106 781 9 to 64 Bit Double Precision IEEE 754 Binary Floating Point Standard, From a Number in Base 10 Decimal System

0.707 106 781 9(10) to 64 bit double precision IEEE 754 binary floating point (1 bit for sign, 11 bits for exponent, 52 bits for mantissa) = ?

1. First, convert to the binary (base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to the binary (base 2) the fractional part: 0.707 106 781 9.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.707 106 781 9 × 2 = 1 + 0.414 213 563 8;
  • 2) 0.414 213 563 8 × 2 = 0 + 0.828 427 127 6;
  • 3) 0.828 427 127 6 × 2 = 1 + 0.656 854 255 2;
  • 4) 0.656 854 255 2 × 2 = 1 + 0.313 708 510 4;
  • 5) 0.313 708 510 4 × 2 = 0 + 0.627 417 020 8;
  • 6) 0.627 417 020 8 × 2 = 1 + 0.254 834 041 6;
  • 7) 0.254 834 041 6 × 2 = 0 + 0.509 668 083 2;
  • 8) 0.509 668 083 2 × 2 = 1 + 0.019 336 166 4;
  • 9) 0.019 336 166 4 × 2 = 0 + 0.038 672 332 8;
  • 10) 0.038 672 332 8 × 2 = 0 + 0.077 344 665 6;
  • 11) 0.077 344 665 6 × 2 = 0 + 0.154 689 331 2;
  • 12) 0.154 689 331 2 × 2 = 0 + 0.309 378 662 4;
  • 13) 0.309 378 662 4 × 2 = 0 + 0.618 757 324 8;
  • 14) 0.618 757 324 8 × 2 = 1 + 0.237 514 649 6;
  • 15) 0.237 514 649 6 × 2 = 0 + 0.475 029 299 2;
  • 16) 0.475 029 299 2 × 2 = 0 + 0.950 058 598 4;
  • 17) 0.950 058 598 4 × 2 = 1 + 0.900 117 196 8;
  • 18) 0.900 117 196 8 × 2 = 1 + 0.800 234 393 6;
  • 19) 0.800 234 393 6 × 2 = 1 + 0.600 468 787 2;
  • 20) 0.600 468 787 2 × 2 = 1 + 0.200 937 574 4;
  • 21) 0.200 937 574 4 × 2 = 0 + 0.401 875 148 8;
  • 22) 0.401 875 148 8 × 2 = 0 + 0.803 750 297 6;
  • 23) 0.803 750 297 6 × 2 = 1 + 0.607 500 595 2;
  • 24) 0.607 500 595 2 × 2 = 1 + 0.215 001 190 4;
  • 25) 0.215 001 190 4 × 2 = 0 + 0.430 002 380 8;
  • 26) 0.430 002 380 8 × 2 = 0 + 0.860 004 761 6;
  • 27) 0.860 004 761 6 × 2 = 1 + 0.720 009 523 2;
  • 28) 0.720 009 523 2 × 2 = 1 + 0.440 019 046 4;
  • 29) 0.440 019 046 4 × 2 = 0 + 0.880 038 092 8;
  • 30) 0.880 038 092 8 × 2 = 1 + 0.760 076 185 6;
  • 31) 0.760 076 185 6 × 2 = 1 + 0.520 152 371 2;
  • 32) 0.520 152 371 2 × 2 = 1 + 0.040 304 742 4;
  • 33) 0.040 304 742 4 × 2 = 0 + 0.080 609 484 8;
  • 34) 0.080 609 484 8 × 2 = 0 + 0.161 218 969 6;
  • 35) 0.161 218 969 6 × 2 = 0 + 0.322 437 939 2;
  • 36) 0.322 437 939 2 × 2 = 0 + 0.644 875 878 4;
  • 37) 0.644 875 878 4 × 2 = 1 + 0.289 751 756 8;
  • 38) 0.289 751 756 8 × 2 = 0 + 0.579 503 513 6;
  • 39) 0.579 503 513 6 × 2 = 1 + 0.159 007 027 2;
  • 40) 0.159 007 027 2 × 2 = 0 + 0.318 014 054 4;
  • 41) 0.318 014 054 4 × 2 = 0 + 0.636 028 108 8;
  • 42) 0.636 028 108 8 × 2 = 1 + 0.272 056 217 6;
  • 43) 0.272 056 217 6 × 2 = 0 + 0.544 112 435 2;
  • 44) 0.544 112 435 2 × 2 = 1 + 0.088 224 870 4;
  • 45) 0.088 224 870 4 × 2 = 0 + 0.176 449 740 8;
  • 46) 0.176 449 740 8 × 2 = 0 + 0.352 899 481 6;
  • 47) 0.352 899 481 6 × 2 = 0 + 0.705 798 963 2;
  • 48) 0.705 798 963 2 × 2 = 1 + 0.411 597 926 4;
  • 49) 0.411 597 926 4 × 2 = 0 + 0.823 195 852 8;
  • 50) 0.823 195 852 8 × 2 = 1 + 0.646 391 705 6;
  • 51) 0.646 391 705 6 × 2 = 1 + 0.292 783 411 2;
  • 52) 0.292 783 411 2 × 2 = 0 + 0.585 566 822 4;
  • 53) 0.585 566 822 4 × 2 = 1 + 0.171 133 644 8;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.707 106 781 9(10) =


0.1011 0101 0000 0100 1111 0011 0011 0111 0000 1010 0101 0001 0110 1(2)


5. Positive number before normalization:

0.707 106 781 9(10) =


0.1011 0101 0000 0100 1111 0011 0011 0111 0000 1010 0101 0001 0110 1(2)


6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right so that only one non zero digit remains to the left of it:


0.707 106 781 9(10) =


0.1011 0101 0000 0100 1111 0011 0011 0111 0000 1010 0101 0001 0110 1(2) =


0.1011 0101 0000 0100 1111 0011 0011 0111 0000 1010 0101 0001 0110 1(2) × 20 =


1.0110 1010 0000 1001 1110 0110 0110 1110 0001 0100 1010 0010 1101(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0110 1010 0000 1001 1110 0110 0110 1110 0001 0100 1010 0010 1101


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-1 + 2(11-1) - 1 =


(-1 + 1 023)(10) =


1 022(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 022 ÷ 2 = 511 + 0;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


1022(10) =


011 1111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0110 1010 0000 1001 1110 0110 0110 1110 0001 0100 1010 0010 1101 =


0110 1010 0000 1001 1110 0110 0110 1110 0001 0100 1010 0010 1101


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1110


Mantissa (52 bits) =
0110 1010 0000 1001 1110 0110 0110 1110 0001 0100 1010 0010 1101


Number 0.707 106 781 9 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point:
0 - 011 1111 1110 - 0110 1010 0000 1001 1110 0110 0110 1110 0001 0100 1010 0010 1101

(64 bits IEEE 754)

More operations of this kind:

0.707 106 781 8 = ? ... 0.707 106 782 = ?


Convert to 64 bit double precision IEEE 754 binary floating point standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes one bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

0.707 106 781 9 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:07 UTC (GMT)
121 985 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:07 UTC (GMT)
0.111 111 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:06 UTC (GMT)
4 000 000 023 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
1.123 412 341 234 123 412 341 234 123 412 341 234 123 412 341 23 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:04 UTC (GMT)
3 603 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:03 UTC (GMT)
86.5 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:02 UTC (GMT)
-160.207 023 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:02 UTC (GMT)
-3.7 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:01 UTC (GMT)
16 852 425 825 155 284 986 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:01 UTC (GMT)
10 000 000 003 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:01 UTC (GMT)
-1.031 21 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:01 UTC (GMT)
-1.23 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 08:59 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100