64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.707 106 781 186 547 524 400 2 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.707 106 781 186 547 524 400 2(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.707 106 781 186 547 524 400 2.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.707 106 781 186 547 524 400 2 × 2 = 1 + 0.414 213 562 373 095 048 800 4;
  • 2) 0.414 213 562 373 095 048 800 4 × 2 = 0 + 0.828 427 124 746 190 097 600 8;
  • 3) 0.828 427 124 746 190 097 600 8 × 2 = 1 + 0.656 854 249 492 380 195 201 6;
  • 4) 0.656 854 249 492 380 195 201 6 × 2 = 1 + 0.313 708 498 984 760 390 403 2;
  • 5) 0.313 708 498 984 760 390 403 2 × 2 = 0 + 0.627 416 997 969 520 780 806 4;
  • 6) 0.627 416 997 969 520 780 806 4 × 2 = 1 + 0.254 833 995 939 041 561 612 8;
  • 7) 0.254 833 995 939 041 561 612 8 × 2 = 0 + 0.509 667 991 878 083 123 225 6;
  • 8) 0.509 667 991 878 083 123 225 6 × 2 = 1 + 0.019 335 983 756 166 246 451 2;
  • 9) 0.019 335 983 756 166 246 451 2 × 2 = 0 + 0.038 671 967 512 332 492 902 4;
  • 10) 0.038 671 967 512 332 492 902 4 × 2 = 0 + 0.077 343 935 024 664 985 804 8;
  • 11) 0.077 343 935 024 664 985 804 8 × 2 = 0 + 0.154 687 870 049 329 971 609 6;
  • 12) 0.154 687 870 049 329 971 609 6 × 2 = 0 + 0.309 375 740 098 659 943 219 2;
  • 13) 0.309 375 740 098 659 943 219 2 × 2 = 0 + 0.618 751 480 197 319 886 438 4;
  • 14) 0.618 751 480 197 319 886 438 4 × 2 = 1 + 0.237 502 960 394 639 772 876 8;
  • 15) 0.237 502 960 394 639 772 876 8 × 2 = 0 + 0.475 005 920 789 279 545 753 6;
  • 16) 0.475 005 920 789 279 545 753 6 × 2 = 0 + 0.950 011 841 578 559 091 507 2;
  • 17) 0.950 011 841 578 559 091 507 2 × 2 = 1 + 0.900 023 683 157 118 183 014 4;
  • 18) 0.900 023 683 157 118 183 014 4 × 2 = 1 + 0.800 047 366 314 236 366 028 8;
  • 19) 0.800 047 366 314 236 366 028 8 × 2 = 1 + 0.600 094 732 628 472 732 057 6;
  • 20) 0.600 094 732 628 472 732 057 6 × 2 = 1 + 0.200 189 465 256 945 464 115 2;
  • 21) 0.200 189 465 256 945 464 115 2 × 2 = 0 + 0.400 378 930 513 890 928 230 4;
  • 22) 0.400 378 930 513 890 928 230 4 × 2 = 0 + 0.800 757 861 027 781 856 460 8;
  • 23) 0.800 757 861 027 781 856 460 8 × 2 = 1 + 0.601 515 722 055 563 712 921 6;
  • 24) 0.601 515 722 055 563 712 921 6 × 2 = 1 + 0.203 031 444 111 127 425 843 2;
  • 25) 0.203 031 444 111 127 425 843 2 × 2 = 0 + 0.406 062 888 222 254 851 686 4;
  • 26) 0.406 062 888 222 254 851 686 4 × 2 = 0 + 0.812 125 776 444 509 703 372 8;
  • 27) 0.812 125 776 444 509 703 372 8 × 2 = 1 + 0.624 251 552 889 019 406 745 6;
  • 28) 0.624 251 552 889 019 406 745 6 × 2 = 1 + 0.248 503 105 778 038 813 491 2;
  • 29) 0.248 503 105 778 038 813 491 2 × 2 = 0 + 0.497 006 211 556 077 626 982 4;
  • 30) 0.497 006 211 556 077 626 982 4 × 2 = 0 + 0.994 012 423 112 155 253 964 8;
  • 31) 0.994 012 423 112 155 253 964 8 × 2 = 1 + 0.988 024 846 224 310 507 929 6;
  • 32) 0.988 024 846 224 310 507 929 6 × 2 = 1 + 0.976 049 692 448 621 015 859 2;
  • 33) 0.976 049 692 448 621 015 859 2 × 2 = 1 + 0.952 099 384 897 242 031 718 4;
  • 34) 0.952 099 384 897 242 031 718 4 × 2 = 1 + 0.904 198 769 794 484 063 436 8;
  • 35) 0.904 198 769 794 484 063 436 8 × 2 = 1 + 0.808 397 539 588 968 126 873 6;
  • 36) 0.808 397 539 588 968 126 873 6 × 2 = 1 + 0.616 795 079 177 936 253 747 2;
  • 37) 0.616 795 079 177 936 253 747 2 × 2 = 1 + 0.233 590 158 355 872 507 494 4;
  • 38) 0.233 590 158 355 872 507 494 4 × 2 = 0 + 0.467 180 316 711 745 014 988 8;
  • 39) 0.467 180 316 711 745 014 988 8 × 2 = 0 + 0.934 360 633 423 490 029 977 6;
  • 40) 0.934 360 633 423 490 029 977 6 × 2 = 1 + 0.868 721 266 846 980 059 955 2;
  • 41) 0.868 721 266 846 980 059 955 2 × 2 = 1 + 0.737 442 533 693 960 119 910 4;
  • 42) 0.737 442 533 693 960 119 910 4 × 2 = 1 + 0.474 885 067 387 920 239 820 8;
  • 43) 0.474 885 067 387 920 239 820 8 × 2 = 0 + 0.949 770 134 775 840 479 641 6;
  • 44) 0.949 770 134 775 840 479 641 6 × 2 = 1 + 0.899 540 269 551 680 959 283 2;
  • 45) 0.899 540 269 551 680 959 283 2 × 2 = 1 + 0.799 080 539 103 361 918 566 4;
  • 46) 0.799 080 539 103 361 918 566 4 × 2 = 1 + 0.598 161 078 206 723 837 132 8;
  • 47) 0.598 161 078 206 723 837 132 8 × 2 = 1 + 0.196 322 156 413 447 674 265 6;
  • 48) 0.196 322 156 413 447 674 265 6 × 2 = 0 + 0.392 644 312 826 895 348 531 2;
  • 49) 0.392 644 312 826 895 348 531 2 × 2 = 0 + 0.785 288 625 653 790 697 062 4;
  • 50) 0.785 288 625 653 790 697 062 4 × 2 = 1 + 0.570 577 251 307 581 394 124 8;
  • 51) 0.570 577 251 307 581 394 124 8 × 2 = 1 + 0.141 154 502 615 162 788 249 6;
  • 52) 0.141 154 502 615 162 788 249 6 × 2 = 0 + 0.282 309 005 230 325 576 499 2;
  • 53) 0.282 309 005 230 325 576 499 2 × 2 = 0 + 0.564 618 010 460 651 152 998 4;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.707 106 781 186 547 524 400 2(10) =


0.1011 0101 0000 0100 1111 0011 0011 0011 1111 1001 1101 1110 0110 0(2)


5. Positive number before normalization:

0.707 106 781 186 547 524 400 2(10) =


0.1011 0101 0000 0100 1111 0011 0011 0011 1111 1001 1101 1110 0110 0(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.707 106 781 186 547 524 400 2(10) =


0.1011 0101 0000 0100 1111 0011 0011 0011 1111 1001 1101 1110 0110 0(2) =


0.1011 0101 0000 0100 1111 0011 0011 0011 1111 1001 1101 1110 0110 0(2) × 20 =


1.0110 1010 0000 1001 1110 0110 0110 0111 1111 0011 1011 1100 1100(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0110 1010 0000 1001 1110 0110 0110 0111 1111 0011 1011 1100 1100


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-1 + 2(11-1) - 1 =


(-1 + 1 023)(10) =


1 022(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 022 ÷ 2 = 511 + 0;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1022(10) =


011 1111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0110 1010 0000 1001 1110 0110 0110 0111 1111 0011 1011 1100 1100 =


0110 1010 0000 1001 1110 0110 0110 0111 1111 0011 1011 1100 1100


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1110


Mantissa (52 bits) =
0110 1010 0000 1001 1110 0110 0110 0111 1111 0011 1011 1100 1100


The base ten decimal number 0.707 106 781 186 547 524 400 2 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1110 - 0110 1010 0000 1001 1110 0110 0110 0111 1111 0011 1011 1100 1100

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 9 999 999 999 999 999 999 999 999 993 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number 17.687 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number 632 622 551 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number 4 128 711 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number -0.69 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number 67.87 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number 1.774 870 858 103 05 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number -243.17 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number 342.07 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
Number 301.4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 03:44 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100