Convert the Number 0.569 394 317 378 345 826 851 915 141 920 6 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 0.569 394 317 378 345 826 851 915 141 920 6(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.569 394 317 378 345 826 851 915 141 920 6.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.569 394 317 378 345 826 851 915 141 920 6 × 2 = 1 + 0.138 788 634 756 691 653 703 830 283 841 2;
  • 2) 0.138 788 634 756 691 653 703 830 283 841 2 × 2 = 0 + 0.277 577 269 513 383 307 407 660 567 682 4;
  • 3) 0.277 577 269 513 383 307 407 660 567 682 4 × 2 = 0 + 0.555 154 539 026 766 614 815 321 135 364 8;
  • 4) 0.555 154 539 026 766 614 815 321 135 364 8 × 2 = 1 + 0.110 309 078 053 533 229 630 642 270 729 6;
  • 5) 0.110 309 078 053 533 229 630 642 270 729 6 × 2 = 0 + 0.220 618 156 107 066 459 261 284 541 459 2;
  • 6) 0.220 618 156 107 066 459 261 284 541 459 2 × 2 = 0 + 0.441 236 312 214 132 918 522 569 082 918 4;
  • 7) 0.441 236 312 214 132 918 522 569 082 918 4 × 2 = 0 + 0.882 472 624 428 265 837 045 138 165 836 8;
  • 8) 0.882 472 624 428 265 837 045 138 165 836 8 × 2 = 1 + 0.764 945 248 856 531 674 090 276 331 673 6;
  • 9) 0.764 945 248 856 531 674 090 276 331 673 6 × 2 = 1 + 0.529 890 497 713 063 348 180 552 663 347 2;
  • 10) 0.529 890 497 713 063 348 180 552 663 347 2 × 2 = 1 + 0.059 780 995 426 126 696 361 105 326 694 4;
  • 11) 0.059 780 995 426 126 696 361 105 326 694 4 × 2 = 0 + 0.119 561 990 852 253 392 722 210 653 388 8;
  • 12) 0.119 561 990 852 253 392 722 210 653 388 8 × 2 = 0 + 0.239 123 981 704 506 785 444 421 306 777 6;
  • 13) 0.239 123 981 704 506 785 444 421 306 777 6 × 2 = 0 + 0.478 247 963 409 013 570 888 842 613 555 2;
  • 14) 0.478 247 963 409 013 570 888 842 613 555 2 × 2 = 0 + 0.956 495 926 818 027 141 777 685 227 110 4;
  • 15) 0.956 495 926 818 027 141 777 685 227 110 4 × 2 = 1 + 0.912 991 853 636 054 283 555 370 454 220 8;
  • 16) 0.912 991 853 636 054 283 555 370 454 220 8 × 2 = 1 + 0.825 983 707 272 108 567 110 740 908 441 6;
  • 17) 0.825 983 707 272 108 567 110 740 908 441 6 × 2 = 1 + 0.651 967 414 544 217 134 221 481 816 883 2;
  • 18) 0.651 967 414 544 217 134 221 481 816 883 2 × 2 = 1 + 0.303 934 829 088 434 268 442 963 633 766 4;
  • 19) 0.303 934 829 088 434 268 442 963 633 766 4 × 2 = 0 + 0.607 869 658 176 868 536 885 927 267 532 8;
  • 20) 0.607 869 658 176 868 536 885 927 267 532 8 × 2 = 1 + 0.215 739 316 353 737 073 771 854 535 065 6;
  • 21) 0.215 739 316 353 737 073 771 854 535 065 6 × 2 = 0 + 0.431 478 632 707 474 147 543 709 070 131 2;
  • 22) 0.431 478 632 707 474 147 543 709 070 131 2 × 2 = 0 + 0.862 957 265 414 948 295 087 418 140 262 4;
  • 23) 0.862 957 265 414 948 295 087 418 140 262 4 × 2 = 1 + 0.725 914 530 829 896 590 174 836 280 524 8;
  • 24) 0.725 914 530 829 896 590 174 836 280 524 8 × 2 = 1 + 0.451 829 061 659 793 180 349 672 561 049 6;
  • 25) 0.451 829 061 659 793 180 349 672 561 049 6 × 2 = 0 + 0.903 658 123 319 586 360 699 345 122 099 2;
  • 26) 0.903 658 123 319 586 360 699 345 122 099 2 × 2 = 1 + 0.807 316 246 639 172 721 398 690 244 198 4;
  • 27) 0.807 316 246 639 172 721 398 690 244 198 4 × 2 = 1 + 0.614 632 493 278 345 442 797 380 488 396 8;
  • 28) 0.614 632 493 278 345 442 797 380 488 396 8 × 2 = 1 + 0.229 264 986 556 690 885 594 760 976 793 6;
  • 29) 0.229 264 986 556 690 885 594 760 976 793 6 × 2 = 0 + 0.458 529 973 113 381 771 189 521 953 587 2;
  • 30) 0.458 529 973 113 381 771 189 521 953 587 2 × 2 = 0 + 0.917 059 946 226 763 542 379 043 907 174 4;
  • 31) 0.917 059 946 226 763 542 379 043 907 174 4 × 2 = 1 + 0.834 119 892 453 527 084 758 087 814 348 8;
  • 32) 0.834 119 892 453 527 084 758 087 814 348 8 × 2 = 1 + 0.668 239 784 907 054 169 516 175 628 697 6;
  • 33) 0.668 239 784 907 054 169 516 175 628 697 6 × 2 = 1 + 0.336 479 569 814 108 339 032 351 257 395 2;
  • 34) 0.336 479 569 814 108 339 032 351 257 395 2 × 2 = 0 + 0.672 959 139 628 216 678 064 702 514 790 4;
  • 35) 0.672 959 139 628 216 678 064 702 514 790 4 × 2 = 1 + 0.345 918 279 256 433 356 129 405 029 580 8;
  • 36) 0.345 918 279 256 433 356 129 405 029 580 8 × 2 = 0 + 0.691 836 558 512 866 712 258 810 059 161 6;
  • 37) 0.691 836 558 512 866 712 258 810 059 161 6 × 2 = 1 + 0.383 673 117 025 733 424 517 620 118 323 2;
  • 38) 0.383 673 117 025 733 424 517 620 118 323 2 × 2 = 0 + 0.767 346 234 051 466 849 035 240 236 646 4;
  • 39) 0.767 346 234 051 466 849 035 240 236 646 4 × 2 = 1 + 0.534 692 468 102 933 698 070 480 473 292 8;
  • 40) 0.534 692 468 102 933 698 070 480 473 292 8 × 2 = 1 + 0.069 384 936 205 867 396 140 960 946 585 6;
  • 41) 0.069 384 936 205 867 396 140 960 946 585 6 × 2 = 0 + 0.138 769 872 411 734 792 281 921 893 171 2;
  • 42) 0.138 769 872 411 734 792 281 921 893 171 2 × 2 = 0 + 0.277 539 744 823 469 584 563 843 786 342 4;
  • 43) 0.277 539 744 823 469 584 563 843 786 342 4 × 2 = 0 + 0.555 079 489 646 939 169 127 687 572 684 8;
  • 44) 0.555 079 489 646 939 169 127 687 572 684 8 × 2 = 1 + 0.110 158 979 293 878 338 255 375 145 369 6;
  • 45) 0.110 158 979 293 878 338 255 375 145 369 6 × 2 = 0 + 0.220 317 958 587 756 676 510 750 290 739 2;
  • 46) 0.220 317 958 587 756 676 510 750 290 739 2 × 2 = 0 + 0.440 635 917 175 513 353 021 500 581 478 4;
  • 47) 0.440 635 917 175 513 353 021 500 581 478 4 × 2 = 0 + 0.881 271 834 351 026 706 043 001 162 956 8;
  • 48) 0.881 271 834 351 026 706 043 001 162 956 8 × 2 = 1 + 0.762 543 668 702 053 412 086 002 325 913 6;
  • 49) 0.762 543 668 702 053 412 086 002 325 913 6 × 2 = 1 + 0.525 087 337 404 106 824 172 004 651 827 2;
  • 50) 0.525 087 337 404 106 824 172 004 651 827 2 × 2 = 1 + 0.050 174 674 808 213 648 344 009 303 654 4;
  • 51) 0.050 174 674 808 213 648 344 009 303 654 4 × 2 = 0 + 0.100 349 349 616 427 296 688 018 607 308 8;
  • 52) 0.100 349 349 616 427 296 688 018 607 308 8 × 2 = 0 + 0.200 698 699 232 854 593 376 037 214 617 6;
  • 53) 0.200 698 699 232 854 593 376 037 214 617 6 × 2 = 0 + 0.401 397 398 465 709 186 752 074 429 235 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.569 394 317 378 345 826 851 915 141 920 6(10) =


0.1001 0001 1100 0011 1101 0011 0111 0011 1010 1011 0001 0001 1100 0(2)


5. Positive number before normalization:

0.569 394 317 378 345 826 851 915 141 920 6(10) =


0.1001 0001 1100 0011 1101 0011 0111 0011 1010 1011 0001 0001 1100 0(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.569 394 317 378 345 826 851 915 141 920 6(10) =


0.1001 0001 1100 0011 1101 0011 0111 0011 1010 1011 0001 0001 1100 0(2) =


0.1001 0001 1100 0011 1101 0011 0111 0011 1010 1011 0001 0001 1100 0(2) × 20 =


1.0010 0011 1000 0111 1010 0110 1110 0111 0101 0110 0010 0011 1000(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0010 0011 1000 0111 1010 0110 1110 0111 0101 0110 0010 0011 1000


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-1 + 2(11-1) - 1 =


(-1 + 1 023)(10) =


1 022(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 022 ÷ 2 = 511 + 0;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1022(10) =


011 1111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0010 0011 1000 0111 1010 0110 1110 0111 0101 0110 0010 0011 1000 =


0010 0011 1000 0111 1010 0110 1110 0111 0101 0110 0010 0011 1000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1110


Mantissa (52 bits) =
0010 0011 1000 0111 1010 0110 1110 0111 0101 0110 0010 0011 1000


The base ten decimal number 0.569 394 317 378 345 826 851 915 141 920 6 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1110 - 0010 0011 1000 0111 1010 0110 1110 0111 0101 0110 0010 0011 1000

(64 bits IEEE 754)

Number 0.569 394 317 378 345 826 851 915 141 920 5 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 0.569 394 317 378 345 826 851 915 141 920 7 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.569 394 317 378 345 826 851 915 141 920 6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:37 UTC (GMT)
Number 2.555 555 555 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:37 UTC (GMT)
Number -2 015 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:37 UTC (GMT)
Number 2.718 281 828 459 045 235 360 287 471 352 662 497 757 247 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number 135 162 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number 38 424 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number -521.762 6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number 12.89 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number 11 354 165 490 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
Number -84.725 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:36 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal