Convert 0.513 597 25 to 64 Bit Double Precision IEEE 754 Binary Floating Point Standard, From a Number in Base 10 Decimal System

0.513 597 25(10) to 64 bit double precision IEEE 754 binary floating point (1 bit for sign, 11 bits for exponent, 52 bits for mantissa) = ?

1. First, convert to the binary (base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to the binary (base 2) the fractional part: 0.513 597 25.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.513 597 25 × 2 = 1 + 0.027 194 5;
  • 2) 0.027 194 5 × 2 = 0 + 0.054 389;
  • 3) 0.054 389 × 2 = 0 + 0.108 778;
  • 4) 0.108 778 × 2 = 0 + 0.217 556;
  • 5) 0.217 556 × 2 = 0 + 0.435 112;
  • 6) 0.435 112 × 2 = 0 + 0.870 224;
  • 7) 0.870 224 × 2 = 1 + 0.740 448;
  • 8) 0.740 448 × 2 = 1 + 0.480 896;
  • 9) 0.480 896 × 2 = 0 + 0.961 792;
  • 10) 0.961 792 × 2 = 1 + 0.923 584;
  • 11) 0.923 584 × 2 = 1 + 0.847 168;
  • 12) 0.847 168 × 2 = 1 + 0.694 336;
  • 13) 0.694 336 × 2 = 1 + 0.388 672;
  • 14) 0.388 672 × 2 = 0 + 0.777 344;
  • 15) 0.777 344 × 2 = 1 + 0.554 688;
  • 16) 0.554 688 × 2 = 1 + 0.109 376;
  • 17) 0.109 376 × 2 = 0 + 0.218 752;
  • 18) 0.218 752 × 2 = 0 + 0.437 504;
  • 19) 0.437 504 × 2 = 0 + 0.875 008;
  • 20) 0.875 008 × 2 = 1 + 0.750 016;
  • 21) 0.750 016 × 2 = 1 + 0.500 032;
  • 22) 0.500 032 × 2 = 1 + 0.000 064;
  • 23) 0.000 064 × 2 = 0 + 0.000 128;
  • 24) 0.000 128 × 2 = 0 + 0.000 256;
  • 25) 0.000 256 × 2 = 0 + 0.000 512;
  • 26) 0.000 512 × 2 = 0 + 0.001 024;
  • 27) 0.001 024 × 2 = 0 + 0.002 048;
  • 28) 0.002 048 × 2 = 0 + 0.004 096;
  • 29) 0.004 096 × 2 = 0 + 0.008 192;
  • 30) 0.008 192 × 2 = 0 + 0.016 384;
  • 31) 0.016 384 × 2 = 0 + 0.032 768;
  • 32) 0.032 768 × 2 = 0 + 0.065 536;
  • 33) 0.065 536 × 2 = 0 + 0.131 072;
  • 34) 0.131 072 × 2 = 0 + 0.262 144;
  • 35) 0.262 144 × 2 = 0 + 0.524 288;
  • 36) 0.524 288 × 2 = 1 + 0.048 576;
  • 37) 0.048 576 × 2 = 0 + 0.097 152;
  • 38) 0.097 152 × 2 = 0 + 0.194 304;
  • 39) 0.194 304 × 2 = 0 + 0.388 608;
  • 40) 0.388 608 × 2 = 0 + 0.777 216;
  • 41) 0.777 216 × 2 = 1 + 0.554 432;
  • 42) 0.554 432 × 2 = 1 + 0.108 864;
  • 43) 0.108 864 × 2 = 0 + 0.217 728;
  • 44) 0.217 728 × 2 = 0 + 0.435 456;
  • 45) 0.435 456 × 2 = 0 + 0.870 912;
  • 46) 0.870 912 × 2 = 1 + 0.741 824;
  • 47) 0.741 824 × 2 = 1 + 0.483 648;
  • 48) 0.483 648 × 2 = 0 + 0.967 296;
  • 49) 0.967 296 × 2 = 1 + 0.934 592;
  • 50) 0.934 592 × 2 = 1 + 0.869 184;
  • 51) 0.869 184 × 2 = 1 + 0.738 368;
  • 52) 0.738 368 × 2 = 1 + 0.476 736;
  • 53) 0.476 736 × 2 = 0 + 0.953 472;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.513 597 25(10) =


0.1000 0011 0111 1011 0001 1100 0000 0000 0001 0000 1100 0110 1111 0(2)


5. Positive number before normalization:

0.513 597 25(10) =


0.1000 0011 0111 1011 0001 1100 0000 0000 0001 0000 1100 0110 1111 0(2)


6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right so that only one non zero digit remains to the left of it:


0.513 597 25(10) =


0.1000 0011 0111 1011 0001 1100 0000 0000 0001 0000 1100 0110 1111 0(2) =


0.1000 0011 0111 1011 0001 1100 0000 0000 0001 0000 1100 0110 1111 0(2) × 20 =


1.0000 0110 1111 0110 0011 1000 0000 0000 0010 0001 1000 1101 1110(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0000 0110 1111 0110 0011 1000 0000 0000 0010 0001 1000 1101 1110


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-1 + 2(11-1) - 1 =


(-1 + 1 023)(10) =


1 022(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 022 ÷ 2 = 511 + 0;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


1022(10) =


011 1111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0000 0110 1111 0110 0011 1000 0000 0000 0010 0001 1000 1101 1110 =


0000 0110 1111 0110 0011 1000 0000 0000 0010 0001 1000 1101 1110


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1110


Mantissa (52 bits) =
0000 0110 1111 0110 0011 1000 0000 0000 0010 0001 1000 1101 1110


Number 0.513 597 25 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point:
0 - 011 1111 1110 - 0000 0110 1111 0110 0011 1000 0000 0000 0010 0001 1000 1101 1110

(64 bits IEEE 754)

More operations of this kind:

0.513 597 24 = ? ... 0.513 597 26 = ?


Convert to 64 bit double precision IEEE 754 binary floating point standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes one bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

0.513 597 25 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:54 UTC (GMT)
-0.293 89 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:52 UTC (GMT)
-928.062 4 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:52 UTC (GMT)
2 297.4 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:52 UTC (GMT)
1 386 874 990 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:51 UTC (GMT)
3 754 238 990 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:51 UTC (GMT)
845 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:51 UTC (GMT)
0.706 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:51 UTC (GMT)
0.000 020 830 729 324 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:50 UTC (GMT)
57 330 892 806 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:50 UTC (GMT)
-0.000 006 61 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:49 UTC (GMT)
7.6 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:48 UTC (GMT)
1 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 to 64 bit double precision IEEE 754 binary floating point = ? Mar 24 09:48 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100